![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtri2 | Structured version Visualization version GIF version |
Description: Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
domtri2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddom2 10010 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
2 | cardon 9977 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
3 | cardon 9977 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
4 | ontri1 6399 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
5 | 2, 3, 4 | mp2an 690 | . . 3 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
6 | cardsdom2 10021 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) | |
7 | 6 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) |
8 | 7 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (¬ (card‘𝐵) ∈ (card‘𝐴) ↔ ¬ 𝐵 ≺ 𝐴)) |
9 | 5, 8 | bitrid 282 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ 𝐵 ≺ 𝐴)) |
10 | 1, 9 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5143 dom cdm 5672 Oncon0 6365 ‘cfv 6543 ≼ cdom 8961 ≺ csdm 8962 cardccrd 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6368 df-on 6369 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-card 9972 |
This theorem is referenced by: fidomtri 10026 harsdom 10028 infdif 10240 infdif2 10241 infunsdom1 10244 infunsdom 10245 infxp 10246 domtri 10587 canthp1lem2 10684 pwfseqlem4a 10692 pwfseqlem4 10693 gchaleph 10702 numinfctb 42798 |
Copyright terms: Public domain | W3C validator |