| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtri2 | Structured version Visualization version GIF version | ||
| Description: Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| domtri2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddom2 9881 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
| 2 | cardon 9848 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 3 | cardon 9848 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
| 4 | ontri1 6348 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
| 6 | cardsdom2 9892 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) | |
| 7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) |
| 8 | 7 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (¬ (card‘𝐵) ∈ (card‘𝐴) ↔ ¬ 𝐵 ≺ 𝐴)) |
| 9 | 5, 8 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ 𝐵 ≺ 𝐴)) |
| 10 | 1, 9 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 dom cdm 5621 Oncon0 6314 ‘cfv 6489 ≼ cdom 8877 ≺ csdm 8878 cardccrd 9839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-card 9843 |
| This theorem is referenced by: fidomtri 9897 harsdom 9899 infdif 10110 infdif2 10111 infunsdom1 10114 infunsdom 10115 infxp 10116 domtri 10458 canthp1lem2 10555 pwfseqlem4a 10563 pwfseqlem4 10564 gchaleph 10573 numinfctb 43260 |
| Copyright terms: Public domain | W3C validator |