|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > domtri2 | Structured version Visualization version GIF version | ||
| Description: Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| domtri2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | carddom2 10018 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
| 2 | cardon 9985 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 3 | cardon 9985 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
| 4 | ontri1 6417 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) | 
| 6 | cardsdom2 10029 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) | |
| 7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵 ≺ 𝐴)) | 
| 8 | 7 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (¬ (card‘𝐵) ∈ (card‘𝐴) ↔ ¬ 𝐵 ≺ 𝐴)) | 
| 9 | 5, 8 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ 𝐵 ≺ 𝐴)) | 
| 10 | 1, 9 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 dom cdm 5684 Oncon0 6383 ‘cfv 6560 ≼ cdom 8984 ≺ csdm 8985 cardccrd 9976 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-card 9980 | 
| This theorem is referenced by: fidomtri 10034 harsdom 10036 infdif 10249 infdif2 10250 infunsdom1 10253 infunsdom 10254 infxp 10255 domtri 10597 canthp1lem2 10694 pwfseqlem4a 10702 pwfseqlem4 10703 gchaleph 10712 numinfctb 43120 | 
| Copyright terms: Public domain | W3C validator |