Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem3 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 39647. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
Ref | Expression |
---|---|
mapdpglem3 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem3.te | . . . 4 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
2 | mapdpglem3.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
3 | 2 | oveq1d 7270 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
4 | 1, 3 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
5 | r19.41v 3273 | . . . . . . 7 ⊢ (∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
6 | mapdpglem.h | . . . . . . . . . . 11 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | mapdpglem.c | . . . . . . . . . . 11 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdpglem.k | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | lcdlmod 39533 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ LMod) |
10 | mapdpglem3.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
12 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
13 | mapdpglem3.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Base‘𝐶) | |
14 | mapdpglem3.t | . . . . . . . . . . 11 ⊢ · = ( ·𝑠 ‘𝐶) | |
15 | mapdpglem2.j | . . . . . . . . . . 11 ⊢ 𝐽 = (LSpan‘𝐶) | |
16 | 11, 12, 13, 14, 15 | lspsnel 20180 | . . . . . . . . . 10 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺))) |
17 | 9, 10, 16 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺))) |
18 | mapdpglem.u | . . . . . . . . . . 11 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | mapdpglem3.a | . . . . . . . . . . 11 ⊢ 𝐴 = (Scalar‘𝑈) | |
20 | mapdpglem3.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝐴) | |
21 | 6, 18, 19, 20, 7, 11, 12, 8 | lcdsbase 39541 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
22 | 21 | rexeqdv 3340 | . . . . . . . . 9 ⊢ (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺))) |
23 | 17, 22 | bitrd 278 | . . . . . . . 8 ⊢ (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺))) |
24 | 23 | anbi1d 629 | . . . . . . 7 ⊢ (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
25 | 5, 24 | bitr4id 289 | . . . . . 6 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
26 | 25 | exbidv 1925 | . . . . 5 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
27 | df-rex 3069 | . . . . 5 ⊢ (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
28 | 26, 27 | bitr4di 288 | . . . 4 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
29 | mapdpglem3.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
30 | mapdpglem1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐶) | |
31 | eqid 2738 | . . . . . . . 8 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
32 | 31 | lsssssubg 20135 | . . . . . . 7 ⊢ (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
33 | 9, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
34 | 13, 31, 15 | lspsncl 20154 | . . . . . . 7 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶)) |
35 | 9, 10, 34 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶)) |
36 | 33, 35 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶)) |
37 | mapdpglem.m | . . . . . . 7 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
38 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
39 | 6, 18, 8 | dvhlmod 39051 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
40 | mapdpglem.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
41 | mapdpglem.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
42 | mapdpglem.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑈) | |
43 | 41, 38, 42 | lspsncl 20154 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
44 | 39, 40, 43 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
45 | 6, 37, 18, 38, 7, 31, 8, 44 | mapdcl2 39597 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
46 | 33, 45 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶)) |
47 | 29, 30, 36, 46 | lsmelvalm 19171 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
48 | 28, 47 | bitr4d 281 | . . 3 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌}))))) |
49 | 4, 48 | mpbird 256 | . 2 ⊢ (𝜑 → ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
50 | ovex 7288 | . . . . 5 ⊢ (𝑔 · 𝐺) ∈ V | |
51 | oveq1 7262 | . . . . . . 7 ⊢ (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧)) | |
52 | 51 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧))) |
53 | 52 | rexbidv 3225 | . . . . 5 ⊢ (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))) |
54 | 50, 53 | ceqsexv 3469 | . . . 4 ⊢ (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
55 | 54 | rexbii 3177 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
56 | rexcom4 3179 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
57 | 55, 56 | bitr3i 276 | . 2 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
58 | 49, 57 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 -gcsg 18494 SubGrpcsubg 18664 LSSumclsm 19154 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 |
This theorem is referenced by: mapdpglem24 39645 |
Copyright terms: Public domain | W3C validator |