Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem3 Structured version   Visualization version   GIF version

Theorem mapdpglem3 41654
Description: Lemma for mapdpg 41685. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem3 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)

Proof of Theorem mapdpglem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32oveq1d 7368 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
41, 3eleqtrd 2830 . . 3 (𝜑𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
5 r19.41v 3159 . . . . . . 7 (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
6 mapdpglem.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
7 mapdpglem.c . . . . . . . . . . 11 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpglem.k . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41571 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
10 mapdpglem3.g . . . . . . . . . 10 (𝜑𝐺𝐹)
11 eqid 2729 . . . . . . . . . . 11 (Scalar‘𝐶) = (Scalar‘𝐶)
12 eqid 2729 . . . . . . . . . . 11 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
13 mapdpglem3.f . . . . . . . . . . 11 𝐹 = (Base‘𝐶)
14 mapdpglem3.t . . . . . . . . . . 11 · = ( ·𝑠𝐶)
15 mapdpglem2.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1611, 12, 13, 14, 15ellspsn 20924 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
179, 10, 16syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
18 mapdpglem.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 mapdpglem3.a . . . . . . . . . . 11 𝐴 = (Scalar‘𝑈)
20 mapdpglem3.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
216, 18, 19, 20, 7, 11, 12, 8lcdsbase 41579 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
2221rexeqdv 3291 . . . . . . . . 9 (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2317, 22bitrd 279 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2423anbi1d 631 . . . . . . 7 (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
255, 24bitr4id 290 . . . . . 6 (𝜑 → (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
2625exbidv 1921 . . . . 5 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
27 df-rex 3054 . . . . 5 (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
2826, 27bitr4di 289 . . . 4 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
29 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
30 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
31 eqid 2729 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3231lsssssubg 20879 . . . . . . 7 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
339, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
3413, 31, 15lspsncl 20898 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
359, 10, 34syl2anc 584 . . . . . 6 (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
3633, 35sseldd 3938 . . . . 5 (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶))
37 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
38 eqid 2729 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
396, 18, 8dvhlmod 41089 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
40 mapdpglem.y . . . . . . . 8 (𝜑𝑌𝑉)
41 mapdpglem.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
42 mapdpglem.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
4341, 38, 42lspsncl 20898 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4439, 40, 43syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
456, 37, 18, 38, 7, 31, 8, 44mapdcl2 41635 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
4633, 45sseldd 3938 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶))
4729, 30, 36, 46lsmelvalm 19548 . . . 4 (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
4828, 47bitr4d 282 . . 3 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌})))))
494, 48mpbird 257 . 2 (𝜑 → ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
50 ovex 7386 . . . . 5 (𝑔 · 𝐺) ∈ V
51 oveq1 7360 . . . . . . 7 (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧))
5251eqeq2d 2740 . . . . . 6 (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5352rexbidv 3153 . . . . 5 (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5450, 53ceqsexv 3489 . . . 4 (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
5554rexbii 3076 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
56 rexcom4 3256 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5755, 56bitr3i 277 . 2 (∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5849, 57sylibr 234 1 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3905  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  -gcsg 18832  SubGrpcsubg 19017  LSSumclsm 19531  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604
This theorem is referenced by:  mapdpglem24  41683
  Copyright terms: Public domain W3C validator