Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem3 Structured version   Visualization version   GIF version

Theorem mapdpglem3 41669
Description: Lemma for mapdpg 41700. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem3 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)

Proof of Theorem mapdpglem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32oveq1d 7402 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
41, 3eleqtrd 2830 . . 3 (𝜑𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
5 r19.41v 3167 . . . . . . 7 (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
6 mapdpglem.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
7 mapdpglem.c . . . . . . . . . . 11 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpglem.k . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41586 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
10 mapdpglem3.g . . . . . . . . . 10 (𝜑𝐺𝐹)
11 eqid 2729 . . . . . . . . . . 11 (Scalar‘𝐶) = (Scalar‘𝐶)
12 eqid 2729 . . . . . . . . . . 11 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
13 mapdpglem3.f . . . . . . . . . . 11 𝐹 = (Base‘𝐶)
14 mapdpglem3.t . . . . . . . . . . 11 · = ( ·𝑠𝐶)
15 mapdpglem2.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1611, 12, 13, 14, 15ellspsn 20909 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
179, 10, 16syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
18 mapdpglem.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 mapdpglem3.a . . . . . . . . . . 11 𝐴 = (Scalar‘𝑈)
20 mapdpglem3.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
216, 18, 19, 20, 7, 11, 12, 8lcdsbase 41594 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
2221rexeqdv 3300 . . . . . . . . 9 (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2317, 22bitrd 279 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2423anbi1d 631 . . . . . . 7 (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
255, 24bitr4id 290 . . . . . 6 (𝜑 → (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
2625exbidv 1921 . . . . 5 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
27 df-rex 3054 . . . . 5 (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
2826, 27bitr4di 289 . . . 4 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
29 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
30 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
31 eqid 2729 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3231lsssssubg 20864 . . . . . . 7 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
339, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
3413, 31, 15lspsncl 20883 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
359, 10, 34syl2anc 584 . . . . . 6 (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
3633, 35sseldd 3947 . . . . 5 (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶))
37 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
38 eqid 2729 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
396, 18, 8dvhlmod 41104 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
40 mapdpglem.y . . . . . . . 8 (𝜑𝑌𝑉)
41 mapdpglem.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
42 mapdpglem.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
4341, 38, 42lspsncl 20883 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4439, 40, 43syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
456, 37, 18, 38, 7, 31, 8, 44mapdcl2 41650 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
4633, 45sseldd 3947 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶))
4729, 30, 36, 46lsmelvalm 19581 . . . 4 (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
4828, 47bitr4d 282 . . 3 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌})))))
494, 48mpbird 257 . 2 (𝜑 → ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
50 ovex 7420 . . . . 5 (𝑔 · 𝐺) ∈ V
51 oveq1 7394 . . . . . . 7 (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧))
5251eqeq2d 2740 . . . . . 6 (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5352rexbidv 3157 . . . . 5 (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5450, 53ceqsexv 3498 . . . 4 (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
5554rexbii 3076 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
56 rexcom4 3264 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5755, 56bitr3i 277 . 2 (∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5849, 57sylibr 234 1 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  -gcsg 18867  SubGrpcsubg 19052  LSSumclsm 19564  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  mapdcmpd 41618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581  df-mapd 41619
This theorem is referenced by:  mapdpglem24  41698
  Copyright terms: Public domain W3C validator