![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem3 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41663. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
Ref | Expression |
---|---|
mapdpglem3 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem3.te | . . . 4 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
2 | mapdpglem3.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
3 | 2 | oveq1d 7463 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
4 | 1, 3 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
5 | r19.41v 3195 | . . . . . . 7 ⊢ (∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
6 | mapdpglem.h | . . . . . . . . . . 11 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | mapdpglem.c | . . . . . . . . . . 11 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdpglem.k | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | lcdlmod 41549 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ LMod) |
10 | mapdpglem3.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | eqid 2740 | . . . . . . . . . . 11 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
12 | eqid 2740 | . . . . . . . . . . 11 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
13 | mapdpglem3.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Base‘𝐶) | |
14 | mapdpglem3.t | . . . . . . . . . . 11 ⊢ · = ( ·𝑠 ‘𝐶) | |
15 | mapdpglem2.j | . . . . . . . . . . 11 ⊢ 𝐽 = (LSpan‘𝐶) | |
16 | 11, 12, 13, 14, 15 | ellspsn 21024 | . . . . . . . . . 10 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺))) |
17 | 9, 10, 16 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺))) |
18 | mapdpglem.u | . . . . . . . . . . 11 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | mapdpglem3.a | . . . . . . . . . . 11 ⊢ 𝐴 = (Scalar‘𝑈) | |
20 | mapdpglem3.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝐴) | |
21 | 6, 18, 19, 20, 7, 11, 12, 8 | lcdsbase 41557 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
22 | 21 | rexeqdv 3335 | . . . . . . . . 9 ⊢ (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺))) |
23 | 17, 22 | bitrd 279 | . . . . . . . 8 ⊢ (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺))) |
24 | 23 | anbi1d 630 | . . . . . . 7 ⊢ (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔 ∈ 𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
25 | 5, 24 | bitr4id 290 | . . . . . 6 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
26 | 25 | exbidv 1920 | . . . . 5 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))) |
27 | df-rex 3077 | . . . . 5 ⊢ (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
28 | 26, 27 | bitr4di 289 | . . . 4 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
29 | mapdpglem3.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
30 | mapdpglem1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐶) | |
31 | eqid 2740 | . . . . . . . 8 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
32 | 31 | lsssssubg 20979 | . . . . . . 7 ⊢ (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
33 | 9, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
34 | 13, 31, 15 | lspsncl 20998 | . . . . . . 7 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶)) |
35 | 9, 10, 34 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶)) |
36 | 33, 35 | sseldd 4009 | . . . . 5 ⊢ (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶)) |
37 | mapdpglem.m | . . . . . . 7 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
38 | eqid 2740 | . . . . . . 7 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
39 | 6, 18, 8 | dvhlmod 41067 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
40 | mapdpglem.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
41 | mapdpglem.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
42 | mapdpglem.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑈) | |
43 | 41, 38, 42 | lspsncl 20998 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
44 | 39, 40, 43 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
45 | 6, 37, 18, 38, 7, 31, 8, 44 | mapdcl2 41613 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
46 | 33, 45 | sseldd 4009 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶)) |
47 | 29, 30, 36, 46 | lsmelvalm 19693 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
48 | 28, 47 | bitr4d 282 | . . 3 ⊢ (𝜑 → (∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) ⊕ (𝑀‘(𝑁‘{𝑌}))))) |
49 | 4, 48 | mpbird 257 | . 2 ⊢ (𝜑 → ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
50 | ovex 7481 | . . . . 5 ⊢ (𝑔 · 𝐺) ∈ V | |
51 | oveq1 7455 | . . . . . . 7 ⊢ (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧)) | |
52 | 51 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧))) |
53 | 52 | rexbidv 3185 | . . . . 5 ⊢ (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))) |
54 | 50, 53 | ceqsexv 3542 | . . . 4 ⊢ (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
55 | 54 | rexbii 3100 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
56 | rexcom4 3294 | . . 3 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) | |
57 | 55, 56 | bitr3i 277 | . 2 ⊢ (∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤∃𝑔 ∈ 𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))) |
58 | 49, 57 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 -gcsg 18975 SubGrpcsubg 19160 LSSumclsm 19676 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 mapdcmpd 41581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 |
This theorem is referenced by: mapdpglem24 41661 |
Copyright terms: Public domain | W3C validator |