Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem3 Structured version   Visualization version   GIF version

Theorem mapdpglem3 41713
Description: Lemma for mapdpg 41744. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem3 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)

Proof of Theorem mapdpglem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32oveq1d 7361 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
41, 3eleqtrd 2833 . . 3 (𝜑𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
5 r19.41v 3162 . . . . . . 7 (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
6 mapdpglem.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
7 mapdpglem.c . . . . . . . . . . 11 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpglem.k . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41630 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
10 mapdpglem3.g . . . . . . . . . 10 (𝜑𝐺𝐹)
11 eqid 2731 . . . . . . . . . . 11 (Scalar‘𝐶) = (Scalar‘𝐶)
12 eqid 2731 . . . . . . . . . . 11 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
13 mapdpglem3.f . . . . . . . . . . 11 𝐹 = (Base‘𝐶)
14 mapdpglem3.t . . . . . . . . . . 11 · = ( ·𝑠𝐶)
15 mapdpglem2.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1611, 12, 13, 14, 15ellspsn 20934 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
179, 10, 16syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
18 mapdpglem.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 mapdpglem3.a . . . . . . . . . . 11 𝐴 = (Scalar‘𝑈)
20 mapdpglem3.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
216, 18, 19, 20, 7, 11, 12, 8lcdsbase 41638 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
2221rexeqdv 3293 . . . . . . . . 9 (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2317, 22bitrd 279 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2423anbi1d 631 . . . . . . 7 (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
255, 24bitr4id 290 . . . . . 6 (𝜑 → (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
2625exbidv 1922 . . . . 5 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
27 df-rex 3057 . . . . 5 (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
2826, 27bitr4di 289 . . . 4 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
29 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
30 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
31 eqid 2731 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3231lsssssubg 20889 . . . . . . 7 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
339, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
3413, 31, 15lspsncl 20908 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
359, 10, 34syl2anc 584 . . . . . 6 (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
3633, 35sseldd 3935 . . . . 5 (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶))
37 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
38 eqid 2731 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
396, 18, 8dvhlmod 41148 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
40 mapdpglem.y . . . . . . . 8 (𝜑𝑌𝑉)
41 mapdpglem.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
42 mapdpglem.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
4341, 38, 42lspsncl 20908 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4439, 40, 43syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
456, 37, 18, 38, 7, 31, 8, 44mapdcl2 41694 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
4633, 45sseldd 3935 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶))
4729, 30, 36, 46lsmelvalm 19561 . . . 4 (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
4828, 47bitr4d 282 . . 3 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌})))))
494, 48mpbird 257 . 2 (𝜑 → ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
50 ovex 7379 . . . . 5 (𝑔 · 𝐺) ∈ V
51 oveq1 7353 . . . . . . 7 (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧))
5251eqeq2d 2742 . . . . . 6 (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5352rexbidv 3156 . . . . 5 (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5450, 53ceqsexv 3487 . . . 4 (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
5554rexbii 3079 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
56 rexcom4 3259 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5755, 56bitr3i 277 . 2 (∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5849, 57sylibr 234 1 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  -gcsg 18845  SubGrpcsubg 19030  LSSumclsm 19544  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902  HLchlt 39388  LHypclh 40022  DVecHcdvh 41116  LCDualclcd 41624  mapdcmpd 41662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-0g 17342  df-mre 17485  df-mrc 17486  df-acs 17488  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-oppg 19256  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20426  df-rlreg 20607  df-domn 20608  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-lsatoms 39014  df-lshyp 39015  df-lcv 39057  df-lfl 39096  df-lkr 39124  df-ldual 39162  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tgrp 40781  df-tendo 40793  df-edring 40795  df-dveca 41041  df-disoa 41067  df-dvech 41117  df-dib 41177  df-dic 41211  df-dih 41267  df-doch 41386  df-djh 41433  df-lcdual 41625  df-mapd 41663
This theorem is referenced by:  mapdpglem24  41742
  Copyright terms: Public domain W3C validator