Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem3 Structured version   Visualization version   GIF version

Theorem mapdpglem3 41794
Description: Lemma for mapdpg 41825. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem3 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)

Proof of Theorem mapdpglem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32oveq1d 7367 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
41, 3eleqtrd 2835 . . 3 (𝜑𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
5 r19.41v 3163 . . . . . . 7 (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
6 mapdpglem.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
7 mapdpglem.c . . . . . . . . . . 11 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpglem.k . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41711 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
10 mapdpglem3.g . . . . . . . . . 10 (𝜑𝐺𝐹)
11 eqid 2733 . . . . . . . . . . 11 (Scalar‘𝐶) = (Scalar‘𝐶)
12 eqid 2733 . . . . . . . . . . 11 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
13 mapdpglem3.f . . . . . . . . . . 11 𝐹 = (Base‘𝐶)
14 mapdpglem3.t . . . . . . . . . . 11 · = ( ·𝑠𝐶)
15 mapdpglem2.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1611, 12, 13, 14, 15ellspsn 20938 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
179, 10, 16syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
18 mapdpglem.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 mapdpglem3.a . . . . . . . . . . 11 𝐴 = (Scalar‘𝑈)
20 mapdpglem3.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
216, 18, 19, 20, 7, 11, 12, 8lcdsbase 41719 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
2221rexeqdv 3294 . . . . . . . . 9 (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2317, 22bitrd 279 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2423anbi1d 631 . . . . . . 7 (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
255, 24bitr4id 290 . . . . . 6 (𝜑 → (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
2625exbidv 1922 . . . . 5 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
27 df-rex 3058 . . . . 5 (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
2826, 27bitr4di 289 . . . 4 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
29 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
30 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
31 eqid 2733 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3231lsssssubg 20893 . . . . . . 7 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
339, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
3413, 31, 15lspsncl 20912 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
359, 10, 34syl2anc 584 . . . . . 6 (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
3633, 35sseldd 3931 . . . . 5 (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶))
37 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
38 eqid 2733 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
396, 18, 8dvhlmod 41229 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
40 mapdpglem.y . . . . . . . 8 (𝜑𝑌𝑉)
41 mapdpglem.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
42 mapdpglem.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
4341, 38, 42lspsncl 20912 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4439, 40, 43syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
456, 37, 18, 38, 7, 31, 8, 44mapdcl2 41775 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
4633, 45sseldd 3931 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶))
4729, 30, 36, 46lsmelvalm 19565 . . . 4 (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
4828, 47bitr4d 282 . . 3 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌})))))
494, 48mpbird 257 . 2 (𝜑 → ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
50 ovex 7385 . . . . 5 (𝑔 · 𝐺) ∈ V
51 oveq1 7359 . . . . . . 7 (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧))
5251eqeq2d 2744 . . . . . 6 (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5352rexbidv 3157 . . . . 5 (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5450, 53ceqsexv 3487 . . . 4 (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
5554rexbii 3080 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
56 rexcom4 3260 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5755, 56bitr3i 277 . 2 (∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5849, 57sylibr 234 1 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  wss 3898  {csn 4575  cfv 6486  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  -gcsg 18850  SubGrpcsubg 19035  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  HLchlt 39469  LHypclh 40103  DVecHcdvh 41197  LCDualclcd 41705  mapdcmpd 41743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20430  df-rlreg 20611  df-domn 20612  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lsatoms 39095  df-lshyp 39096  df-lcv 39138  df-lfl 39177  df-lkr 39205  df-ldual 39243  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278  df-tgrp 40862  df-tendo 40874  df-edring 40876  df-dveca 41122  df-disoa 41148  df-dvech 41198  df-dib 41258  df-dic 41292  df-dih 41348  df-doch 41467  df-djh 41514  df-lcdual 41706  df-mapd 41744
This theorem is referenced by:  mapdpglem24  41823
  Copyright terms: Public domain W3C validator