Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem3 Structured version   Visualization version   GIF version

Theorem mapdpglem3 41278
Description: Lemma for mapdpg 41309. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem3 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)

Proof of Theorem mapdpglem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdpglem3.te . . . 4 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32oveq1d 7434 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
41, 3eleqtrd 2827 . . 3 (𝜑𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))))
5 r19.41v 3178 . . . . . . 7 (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
6 mapdpglem.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
7 mapdpglem.c . . . . . . . . . . 11 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpglem.k . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41195 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
10 mapdpglem3.g . . . . . . . . . 10 (𝜑𝐺𝐹)
11 eqid 2725 . . . . . . . . . . 11 (Scalar‘𝐶) = (Scalar‘𝐶)
12 eqid 2725 . . . . . . . . . . 11 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
13 mapdpglem3.f . . . . . . . . . . 11 𝐹 = (Base‘𝐶)
14 mapdpglem3.t . . . . . . . . . . 11 · = ( ·𝑠𝐶)
15 mapdpglem2.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1611, 12, 13, 14, 15lspsnel 20899 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
179, 10, 16syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺)))
18 mapdpglem.u . . . . . . . . . . 11 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 mapdpglem3.a . . . . . . . . . . 11 𝐴 = (Scalar‘𝑈)
20 mapdpglem3.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
216, 18, 19, 20, 7, 11, 12, 8lcdsbase 41203 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
2221rexeqdv 3315 . . . . . . . . 9 (𝜑 → (∃𝑔 ∈ (Base‘(Scalar‘𝐶))𝑤 = (𝑔 · 𝐺) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2317, 22bitrd 278 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐽‘{𝐺}) ↔ ∃𝑔𝐵 𝑤 = (𝑔 · 𝐺)))
2423anbi1d 629 . . . . . . 7 (𝜑 → ((𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (∃𝑔𝐵 𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
255, 24bitr4id 289 . . . . . 6 (𝜑 → (∃𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ (𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
2625exbidv 1916 . . . . 5 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧))))
27 df-rex 3060 . . . . 5 (∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑤(𝑤 ∈ (𝐽‘{𝐺}) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
2826, 27bitr4di 288 . . . 4 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
29 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
30 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
31 eqid 2725 . . . . . . . 8 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3231lsssssubg 20854 . . . . . . 7 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
339, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
3413, 31, 15lspsncl 20873 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
359, 10, 34syl2anc 582 . . . . . 6 (𝜑 → (𝐽‘{𝐺}) ∈ (LSubSp‘𝐶))
3633, 35sseldd 3977 . . . . 5 (𝜑 → (𝐽‘{𝐺}) ∈ (SubGrp‘𝐶))
37 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
38 eqid 2725 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
396, 18, 8dvhlmod 40713 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
40 mapdpglem.y . . . . . . . 8 (𝜑𝑌𝑉)
41 mapdpglem.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
42 mapdpglem.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
4341, 38, 42lspsncl 20873 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4439, 40, 43syl2anc 582 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
456, 37, 18, 38, 7, 31, 8, 44mapdcl2 41259 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
4633, 45sseldd 3977 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (SubGrp‘𝐶))
4729, 30, 36, 46lsmelvalm 19618 . . . 4 (𝜑 → (𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌}))) ↔ ∃𝑤 ∈ (𝐽‘{𝐺})∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
4828, 47bitr4d 281 . . 3 (𝜑 → (∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ 𝑡 ∈ ((𝐽‘{𝐺}) (𝑀‘(𝑁‘{𝑌})))))
494, 48mpbird 256 . 2 (𝜑 → ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
50 ovex 7452 . . . . 5 (𝑔 · 𝐺) ∈ V
51 oveq1 7426 . . . . . . 7 (𝑤 = (𝑔 · 𝐺) → (𝑤𝑅𝑧) = ((𝑔 · 𝐺)𝑅𝑧))
5251eqeq2d 2736 . . . . . 6 (𝑤 = (𝑔 · 𝐺) → (𝑡 = (𝑤𝑅𝑧) ↔ 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5352rexbidv 3168 . . . . 5 (𝑤 = (𝑔 · 𝐺) → (∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧)))
5450, 53ceqsexv 3514 . . . 4 (∃𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
5554rexbii 3083 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
56 rexcom4 3275 . . 3 (∃𝑔𝐵𝑤(𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5755, 56bitr3i 276 . 2 (∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧) ↔ ∃𝑤𝑔𝐵 (𝑤 = (𝑔 · 𝐺) ∧ ∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = (𝑤𝑅𝑧)))
5849, 57sylibr 233 1 (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wrex 3059  wss 3944  {csn 4630  cfv 6549  (class class class)co 7419  Basecbs 17183  Scalarcsca 17239   ·𝑠 cvsca 17240  -gcsg 18900  SubGrpcsubg 19083  LSSumclsm 19601  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867  HLchlt 38952  LHypclh 39587  DVecHcdvh 40681  LCDualclcd 41189  mapdcmpd 41227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-mre 17569  df-mrc 17570  df-acs 17572  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-oppg 19309  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-lshyp 38579  df-lcv 38621  df-lfl 38660  df-lkr 38688  df-ldual 38726  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tgrp 40346  df-tendo 40358  df-edring 40360  df-dveca 40606  df-disoa 40632  df-dvech 40682  df-dib 40742  df-dic 40776  df-dih 40832  df-doch 40951  df-djh 40998  df-lcdual 41190  df-mapd 41228
This theorem is referenced by:  mapdpglem24  41307
  Copyright terms: Public domain W3C validator