![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptif1n0 | Structured version Visualization version GIF version |
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.) |
Ref | Expression |
---|---|
gsummpt1n0.0 | ⊢ 0 = (0g‘𝐺) |
gsummpt1n0.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsummpt1n0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
gsummpt1n0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
gsummpt1n0.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
gsummptif1n0.a | ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
Ref | Expression |
---|---|
gsummptif1n0 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummpt1n0.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
2 | gsummpt1n0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
3 | gsummpt1n0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | gsummpt1n0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
5 | gsummpt1n0.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
6 | gsummptif1n0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) | |
7 | 6 | ralrimivw 3133 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) |
8 | 1, 2, 3, 4, 5, 7 | gsummpt1n0 18838 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
9 | csbconstg 3799 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ⦋𝑋 / 𝑛⦌𝐴 = 𝐴) | |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝜑 → ⦋𝑋 / 𝑛⦌𝐴 = 𝐴) |
11 | 8, 10 | eqtrd 2814 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ⦋csb 3786 ifcif 4350 ↦ cmpt 5008 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 0gc0g 16569 Σg cgsu 16570 Mndcmnd 17762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-0g 16571 df-gsum 16572 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 |
This theorem is referenced by: 1mavmul 20861 mulmarep1gsum1 20886 mdetdiag 20912 |
Copyright terms: Public domain | W3C validator |