![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8a | Structured version Visualization version GIF version |
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8a | ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . 2 ⊢ recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) | |
2 | rneq 5596 | . . . . 5 ⊢ (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓) | |
3 | 2 | difeq2d 3950 | . . . 4 ⊢ (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓)) |
4 | 3 | fveq2d 6450 | . . 3 ⊢ (𝑣 = 𝑓 → (ℎ‘(𝐴 ∖ ran 𝑣)) = (ℎ‘(𝐴 ∖ ran 𝑓))) |
5 | 4 | cbvmptv 4985 | . 2 ⊢ (𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑓))) |
6 | 1, 5 | dfac8alem 9185 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1823 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 Vcvv 3397 ∖ cdif 3788 ∅c0 4140 𝒫 cpw 4378 ↦ cmpt 4965 dom cdm 5355 ran crn 5356 ‘cfv 6135 recscrecs 7750 cardccrd 9094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-wrecs 7689 df-recs 7751 df-en 8242 df-card 9098 |
This theorem is referenced by: ween 9191 acnnum 9208 dfac8 9292 |
Copyright terms: Public domain | W3C validator |