MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Structured version   Visualization version   GIF version

Theorem dfac8a 9973
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑦,,𝐴   𝐵,
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem dfac8a
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))))
2 rneq 5896 . . . . 5 (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓)
32difeq2d 4087 . . . 4 (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓))
43fveq2d 6851 . . 3 (𝑣 = 𝑓 → (‘(𝐴 ∖ ran 𝑣)) = (‘(𝐴 ∖ ran 𝑓)))
54cbvmptv 5223 . 2 (𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (‘(𝐴 ∖ ran 𝑓)))
61, 5dfac8alem 9972 1 (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  wne 2944  wral 3065  Vcvv 3448  cdif 3912  c0 4287  𝒫 cpw 4565  cmpt 5193  dom cdm 5638  ran crn 5639  cfv 6501  recscrecs 8321  cardccrd 9878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-en 8891  df-card 9882
This theorem is referenced by:  ween  9978  acnnum  9995  dfac8  10078
  Copyright terms: Public domain W3C validator