![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8a | Structured version Visualization version GIF version |
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8a | ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) | |
2 | rneq 5938 | . . . . 5 ⊢ (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓) | |
3 | 2 | difeq2d 4120 | . . . 4 ⊢ (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓)) |
4 | 3 | fveq2d 6901 | . . 3 ⊢ (𝑣 = 𝑓 → (ℎ‘(𝐴 ∖ ran 𝑣)) = (ℎ‘(𝐴 ∖ ran 𝑓))) |
5 | 4 | cbvmptv 5261 | . 2 ⊢ (𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑓))) |
6 | 1, 5 | dfac8alem 10053 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 𝒫 cpw 4603 ↦ cmpt 5231 dom cdm 5678 ran crn 5679 ‘cfv 6548 recscrecs 8391 cardccrd 9959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-en 8965 df-card 9963 |
This theorem is referenced by: ween 10059 acnnum 10076 dfac8 10159 |
Copyright terms: Public domain | W3C validator |