MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Structured version   Visualization version   GIF version

Theorem dfac8a 9459
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑦,,𝐴   𝐵,
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem dfac8a
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))))
2 rneq 5809 . . . . 5 (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓)
32difeq2d 4102 . . . 4 (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓))
43fveq2d 6677 . . 3 (𝑣 = 𝑓 → (‘(𝐴 ∖ ran 𝑣)) = (‘(𝐴 ∖ ran 𝑓)))
54cbvmptv 5172 . 2 (𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (‘(𝐴 ∖ ran 𝑓)))
61, 5dfac8alem 9458 1 (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2113  wne 3019  wral 3141  Vcvv 3497  cdif 3936  c0 4294  𝒫 cpw 4542  cmpt 5149  dom cdm 5558  ran crn 5559  cfv 6358  recscrecs 8010  cardccrd 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 7950  df-recs 8011  df-en 8513  df-card 9371
This theorem is referenced by:  ween  9464  acnnum  9481  dfac8  9564
  Copyright terms: Public domain W3C validator