MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Structured version   Visualization version   GIF version

Theorem dfac8a 10025
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑦,,𝐴   𝐵,
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem dfac8a
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))))
2 rneq 5936 . . . . 5 (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓)
32difeq2d 4123 . . . 4 (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓))
43fveq2d 6896 . . 3 (𝑣 = 𝑓 → (‘(𝐴 ∖ ran 𝑣)) = (‘(𝐴 ∖ ran 𝑓)))
54cbvmptv 5262 . 2 (𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (‘(𝐴 ∖ ran 𝑓)))
61, 5dfac8alem 10024 1 (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  wne 2941  wral 3062  Vcvv 3475  cdif 3946  c0 4323  𝒫 cpw 4603  cmpt 5232  dom cdm 5677  ran crn 5678  cfv 6544  recscrecs 8370  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-en 8940  df-card 9934
This theorem is referenced by:  ween  10030  acnnum  10047  dfac8  10130
  Copyright terms: Public domain W3C validator