| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac8a | Structured version Visualization version GIF version | ||
| Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| dfac8a | ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣)))) | |
| 2 | rneq 5900 | . . . . 5 ⊢ (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓) | |
| 3 | 2 | difeq2d 4089 | . . . 4 ⊢ (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓)) |
| 4 | 3 | fveq2d 6862 | . . 3 ⊢ (𝑣 = 𝑓 → (ℎ‘(𝐴 ∖ ran 𝑣)) = (ℎ‘(𝐴 ∖ ran 𝑓))) |
| 5 | 4 | cbvmptv 5211 | . 2 ⊢ (𝑣 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (ℎ‘(𝐴 ∖ ran 𝑓))) |
| 6 | 1, 5 | dfac8alem 9982 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ‘cfv 6511 recscrecs 8339 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-en 8919 df-card 9892 |
| This theorem is referenced by: ween 9988 acnnum 10005 dfac8 10089 |
| Copyright terms: Public domain | W3C validator |