| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13503 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13502 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2817 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4608 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2728 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 (class class class)co 7390 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fzsuc 13539 fzpred 13540 fzpr 13547 fzsuc2 13550 fz0sn 13595 fz0sn0fz1 13613 fzosn 13704 seqf1o 14015 hashsng 14341 sumsnf 15716 fsum1 15720 fsumm1 15724 fsum1p 15726 prodsn 15935 fprod1 15936 prodsnf 15937 fprod1p 15941 fprodabs 15947 fprodefsum 16068 phi1 16750 vdwlem8 16966 strle1 17135 telgsumfzs 19926 pmatcollpw3fi1 22682 imasdsf1olem 24268 ehl1eudis 25327 voliunlem1 25458 ply1termlem 26115 pntpbnd1 27504 0wlkons1 30057 iuninc 32496 fzspl 32719 esumfzf 34066 ballotlemfc0 34491 ballotlemfcc 34492 plymulx0 34545 signstf0 34566 subfac1 35172 subfacp1lem1 35173 subfacp1lem5 35178 subfacp1lem6 35179 cvmliftlem10 35288 fwddifn0 36159 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem13 37634 poimirlem14 37635 poimirlem16 37637 poimirlem17 37638 poimirlem18 37639 poimirlem19 37640 poimirlem20 37641 poimirlem21 37642 poimirlem22 37643 poimirlem26 37647 poimirlem28 37649 poimirlem31 37652 poimirlem32 37653 sdclem1 37744 fdc 37746 aks6d1c1 42111 sticksstones9 42149 sticksstones11 42151 trclfvdecomr 43724 k0004val0 44150 sumsnd 45027 fzdifsuc2 45315 dvnmul 45948 stoweidlem17 46022 carageniuncllem1 46526 caratheodorylem1 46531 hoidmvlelem3 46602 fzopredsuc 47328 sbgoldbo 47792 nnsum3primesprm 47795 stgr1 47964 |
| Copyright terms: Public domain | W3C validator |