MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 13503
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 13472 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 13471 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2816 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 247 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 226 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4601 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2727 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585  (class class class)co 7369  cz 12505  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  fzsuc  13508  fzpred  13509  fzpr  13516  fzsuc2  13519  fz0sn  13564  fz0sn0fz1  13582  fzosn  13673  seqf1o  13984  hashsng  14310  sumsnf  15685  fsum1  15689  fsumm1  15693  fsum1p  15695  prodsn  15904  fprod1  15905  prodsnf  15906  fprod1p  15910  fprodabs  15916  fprodefsum  16037  phi1  16719  vdwlem8  16935  strle1  17104  telgsumfzs  19903  pmatcollpw3fi1  22708  imasdsf1olem  24294  ehl1eudis  25353  voliunlem1  25484  ply1termlem  26141  pntpbnd1  27530  0wlkons1  30100  iuninc  32539  fzspl  32762  esumfzf  34052  ballotlemfc0  34477  ballotlemfcc  34478  plymulx0  34531  signstf0  34552  subfac1  35158  subfacp1lem1  35159  subfacp1lem5  35164  subfacp1lem6  35165  cvmliftlem10  35274  fwddifn0  36145  poimirlem2  37609  poimirlem3  37610  poimirlem4  37611  poimirlem6  37613  poimirlem7  37614  poimirlem13  37620  poimirlem14  37621  poimirlem16  37623  poimirlem17  37624  poimirlem18  37625  poimirlem19  37626  poimirlem20  37627  poimirlem21  37628  poimirlem22  37629  poimirlem26  37633  poimirlem28  37635  poimirlem31  37638  poimirlem32  37639  sdclem1  37730  fdc  37732  aks6d1c1  42097  sticksstones9  42135  sticksstones11  42137  trclfvdecomr  43710  k0004val0  44136  sumsnd  45013  fzdifsuc2  45301  dvnmul  45934  stoweidlem17  46008  carageniuncllem1  46512  caratheodorylem1  46517  hoidmvlelem3  46588  fzopredsuc  47317  sbgoldbo  47781  nnsum3primesprm  47784  stgr1  47953
  Copyright terms: Public domain W3C validator