| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13472 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13471 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4601 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2727 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4585 (class class class)co 7369 ℤcz 12505 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: fzsuc 13508 fzpred 13509 fzpr 13516 fzsuc2 13519 fz0sn 13564 fz0sn0fz1 13582 fzosn 13673 seqf1o 13984 hashsng 14310 sumsnf 15685 fsum1 15689 fsumm1 15693 fsum1p 15695 prodsn 15904 fprod1 15905 prodsnf 15906 fprod1p 15910 fprodabs 15916 fprodefsum 16037 phi1 16719 vdwlem8 16935 strle1 17104 telgsumfzs 19903 pmatcollpw3fi1 22708 imasdsf1olem 24294 ehl1eudis 25353 voliunlem1 25484 ply1termlem 26141 pntpbnd1 27530 0wlkons1 30100 iuninc 32539 fzspl 32762 esumfzf 34052 ballotlemfc0 34477 ballotlemfcc 34478 plymulx0 34531 signstf0 34552 subfac1 35158 subfacp1lem1 35159 subfacp1lem5 35164 subfacp1lem6 35165 cvmliftlem10 35274 fwddifn0 36145 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem13 37620 poimirlem14 37621 poimirlem16 37623 poimirlem17 37624 poimirlem18 37625 poimirlem19 37626 poimirlem20 37627 poimirlem21 37628 poimirlem22 37629 poimirlem26 37633 poimirlem28 37635 poimirlem31 37638 poimirlem32 37639 sdclem1 37730 fdc 37732 aks6d1c1 42097 sticksstones9 42135 sticksstones11 42137 trclfvdecomr 43710 k0004val0 44136 sumsnd 45013 fzdifsuc2 45301 dvnmul 45934 stoweidlem17 46008 carageniuncllem1 46512 caratheodorylem1 46517 hoidmvlelem3 46588 fzopredsuc 47317 sbgoldbo 47781 nnsum3primesprm 47784 stgr1 47953 |
| Copyright terms: Public domain | W3C validator |