Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 13196 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
2 | elfz3 13195 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
3 | eleq1 2826 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
4 | 2, 3 | syl5ibrcom 246 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
5 | 1, 4 | impbid2 225 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
6 | velsn 4574 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
7 | 5, 6 | bitr4di 288 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
8 | 7 | eqrdv 2736 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 (class class class)co 7255 ℤcz 12249 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fzsuc 13232 fzpred 13233 fzpr 13240 fzsuc2 13243 fz0sn 13285 fz0sn0fz1 13302 fzosn 13386 seqf1o 13692 hashsng 14012 sumsnf 15383 fsum1 15387 fsumm1 15391 fsum1p 15393 prodsn 15600 fprod1 15601 prodsnf 15602 fprod1p 15606 fprodabs 15612 fprodefsum 15732 phi1 16402 vdwlem8 16617 strle1 16787 telgsumfzs 19505 pmatcollpw3fi1 21845 imasdsf1olem 23434 ehl1eudis 24489 voliunlem1 24619 ply1termlem 25269 pntpbnd1 26639 0wlkons1 28386 iuninc 30801 fzspl 31013 esumfzf 31937 ballotlemfc0 32359 ballotlemfcc 32360 plymulx0 32426 signstf0 32447 subfac1 33040 subfacp1lem1 33041 subfacp1lem5 33046 subfacp1lem6 33047 cvmliftlem10 33156 fwddifn0 34393 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem13 35717 poimirlem14 35718 poimirlem16 35720 poimirlem17 35721 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem21 35725 poimirlem22 35726 poimirlem26 35730 poimirlem28 35732 poimirlem31 35735 poimirlem32 35736 sdclem1 35828 fdc 35830 sticksstones9 40038 sticksstones11 40040 metakunt18 40070 metakunt20 40072 metakunt24 40076 trclfvdecomr 41225 k0004val0 41653 sumsnd 42458 fzdifsuc2 42739 dvnmul 43374 stoweidlem17 43448 carageniuncllem1 43949 caratheodorylem1 43954 hoidmvlelem3 44025 fzopredsuc 44703 sbgoldbo 45127 nnsum3primesprm 45130 |
Copyright terms: Public domain | W3C validator |