MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 13626
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 13595 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 13594 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2832 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 247 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 226 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4664 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2738 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648  (class class class)co 7448  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  fzsuc  13631  fzpred  13632  fzpr  13639  fzsuc2  13642  fz0sn  13684  fz0sn0fz1  13702  fzosn  13787  seqf1o  14094  hashsng  14418  sumsnf  15791  fsum1  15795  fsumm1  15799  fsum1p  15801  prodsn  16010  fprod1  16011  prodsnf  16012  fprod1p  16016  fprodabs  16022  fprodefsum  16143  phi1  16820  vdwlem8  17035  strle1  17205  telgsumfzs  20031  pmatcollpw3fi1  22815  imasdsf1olem  24404  ehl1eudis  25473  voliunlem1  25604  ply1termlem  26262  pntpbnd1  27648  0wlkons1  30153  iuninc  32583  fzspl  32795  esumfzf  34033  ballotlemfc0  34457  ballotlemfcc  34458  plymulx0  34524  signstf0  34545  subfac1  35146  subfacp1lem1  35147  subfacp1lem5  35152  subfacp1lem6  35153  cvmliftlem10  35262  fwddifn0  36128  poimirlem2  37582  poimirlem3  37583  poimirlem4  37584  poimirlem6  37586  poimirlem7  37587  poimirlem13  37593  poimirlem14  37594  poimirlem16  37596  poimirlem17  37597  poimirlem18  37598  poimirlem19  37599  poimirlem20  37600  poimirlem21  37601  poimirlem22  37602  poimirlem26  37606  poimirlem28  37608  poimirlem31  37611  poimirlem32  37612  sdclem1  37703  fdc  37705  aks6d1c1  42073  sticksstones9  42111  sticksstones11  42113  metakunt18  42179  metakunt20  42181  metakunt24  42185  trclfvdecomr  43690  k0004val0  44116  sumsnd  44926  fzdifsuc2  45225  dvnmul  45864  stoweidlem17  45938  carageniuncllem1  46442  caratheodorylem1  46447  hoidmvlelem3  46518  fzopredsuc  47238  sbgoldbo  47661  nnsum3primesprm  47664
  Copyright terms: Public domain W3C validator