| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13552 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13551 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2822 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4617 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2733 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 (class class class)co 7405 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: fzsuc 13588 fzpred 13589 fzpr 13596 fzsuc2 13599 fz0sn 13644 fz0sn0fz1 13662 fzosn 13752 seqf1o 14061 hashsng 14387 sumsnf 15759 fsum1 15763 fsumm1 15767 fsum1p 15769 prodsn 15978 fprod1 15979 prodsnf 15980 fprod1p 15984 fprodabs 15990 fprodefsum 16111 phi1 16792 vdwlem8 17008 strle1 17177 telgsumfzs 19970 pmatcollpw3fi1 22726 imasdsf1olem 24312 ehl1eudis 25372 voliunlem1 25503 ply1termlem 26160 pntpbnd1 27549 0wlkons1 30102 iuninc 32541 fzspl 32766 esumfzf 34100 ballotlemfc0 34525 ballotlemfcc 34526 plymulx0 34579 signstf0 34600 subfac1 35200 subfacp1lem1 35201 subfacp1lem5 35206 subfacp1lem6 35207 cvmliftlem10 35316 fwddifn0 36182 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem6 37650 poimirlem7 37651 poimirlem13 37657 poimirlem14 37658 poimirlem16 37660 poimirlem17 37661 poimirlem18 37662 poimirlem19 37663 poimirlem20 37664 poimirlem21 37665 poimirlem22 37666 poimirlem26 37670 poimirlem28 37672 poimirlem31 37675 poimirlem32 37676 sdclem1 37767 fdc 37769 aks6d1c1 42129 sticksstones9 42167 sticksstones11 42169 metakunt18 42235 metakunt20 42237 metakunt24 42241 trclfvdecomr 43752 k0004val0 44178 sumsnd 45050 fzdifsuc2 45339 dvnmul 45972 stoweidlem17 46046 carageniuncllem1 46550 caratheodorylem1 46555 hoidmvlelem3 46626 fzopredsuc 47352 sbgoldbo 47801 nnsum3primesprm 47804 stgr1 47973 |
| Copyright terms: Public domain | W3C validator |