| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13496 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13495 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4605 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2727 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 (class class class)co 7387 ℤcz 12529 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fzsuc 13532 fzpred 13533 fzpr 13540 fzsuc2 13543 fz0sn 13588 fz0sn0fz1 13606 fzosn 13697 seqf1o 14008 hashsng 14334 sumsnf 15709 fsum1 15713 fsumm1 15717 fsum1p 15719 prodsn 15928 fprod1 15929 prodsnf 15930 fprod1p 15934 fprodabs 15940 fprodefsum 16061 phi1 16743 vdwlem8 16959 strle1 17128 telgsumfzs 19919 pmatcollpw3fi1 22675 imasdsf1olem 24261 ehl1eudis 25320 voliunlem1 25451 ply1termlem 26108 pntpbnd1 27497 0wlkons1 30050 iuninc 32489 fzspl 32712 esumfzf 34059 ballotlemfc0 34484 ballotlemfcc 34485 plymulx0 34538 signstf0 34559 subfac1 35165 subfacp1lem1 35166 subfacp1lem5 35171 subfacp1lem6 35172 cvmliftlem10 35281 fwddifn0 36152 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem13 37627 poimirlem14 37628 poimirlem16 37630 poimirlem17 37631 poimirlem18 37632 poimirlem19 37633 poimirlem20 37634 poimirlem21 37635 poimirlem22 37636 poimirlem26 37640 poimirlem28 37642 poimirlem31 37645 poimirlem32 37646 sdclem1 37737 fdc 37739 aks6d1c1 42104 sticksstones9 42142 sticksstones11 42144 trclfvdecomr 43717 k0004val0 44143 sumsnd 45020 fzdifsuc2 45308 dvnmul 45941 stoweidlem17 46015 carageniuncllem1 46519 caratheodorylem1 46524 hoidmvlelem3 46595 fzopredsuc 47324 sbgoldbo 47788 nnsum3primesprm 47791 stgr1 47960 |
| Copyright terms: Public domain | W3C validator |