| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13435 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13434 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2819 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4589 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2729 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 (class class class)co 7346 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: fzsuc 13471 fzpred 13472 fzpr 13479 fzsuc2 13482 fz0sn 13527 fz0sn0fz1 13545 fzosn 13636 seqf1o 13950 hashsng 14276 sumsnf 15650 fsum1 15654 fsumm1 15658 fsum1p 15660 prodsn 15869 fprod1 15870 prodsnf 15871 fprod1p 15875 fprodabs 15881 fprodefsum 16002 phi1 16684 vdwlem8 16900 strle1 17069 telgsumfzs 19901 pmatcollpw3fi1 22703 imasdsf1olem 24288 ehl1eudis 25347 voliunlem1 25478 ply1termlem 26135 pntpbnd1 27524 0wlkons1 30101 iuninc 32540 fzspl 32772 esumfzf 34082 ballotlemfc0 34506 ballotlemfcc 34507 plymulx0 34560 signstf0 34581 subfac1 35222 subfacp1lem1 35223 subfacp1lem5 35228 subfacp1lem6 35229 cvmliftlem10 35338 fwddifn0 36208 poimirlem2 37661 poimirlem3 37662 poimirlem4 37663 poimirlem6 37665 poimirlem7 37666 poimirlem13 37672 poimirlem14 37673 poimirlem16 37675 poimirlem17 37676 poimirlem18 37677 poimirlem19 37678 poimirlem20 37679 poimirlem21 37680 poimirlem22 37681 poimirlem26 37685 poimirlem28 37687 poimirlem31 37690 poimirlem32 37691 sdclem1 37782 fdc 37784 aks6d1c1 42208 sticksstones9 42246 sticksstones11 42248 trclfvdecomr 43820 k0004val0 44246 sumsnd 45122 fzdifsuc2 45410 dvnmul 46040 stoweidlem17 46114 carageniuncllem1 46618 caratheodorylem1 46623 hoidmvlelem3 46694 fzopredsuc 47422 sbgoldbo 47886 nnsum3primesprm 47889 stgr1 48060 |
| Copyright terms: Public domain | W3C validator |