MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 13534
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 13503 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 13502 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2817 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 247 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 226 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4608 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2728 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592  (class class class)co 7390  cz 12536  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  fzsuc  13539  fzpred  13540  fzpr  13547  fzsuc2  13550  fz0sn  13595  fz0sn0fz1  13613  fzosn  13704  seqf1o  14015  hashsng  14341  sumsnf  15716  fsum1  15720  fsumm1  15724  fsum1p  15726  prodsn  15935  fprod1  15936  prodsnf  15937  fprod1p  15941  fprodabs  15947  fprodefsum  16068  phi1  16750  vdwlem8  16966  strle1  17135  telgsumfzs  19926  pmatcollpw3fi1  22682  imasdsf1olem  24268  ehl1eudis  25327  voliunlem1  25458  ply1termlem  26115  pntpbnd1  27504  0wlkons1  30057  iuninc  32496  fzspl  32719  esumfzf  34066  ballotlemfc0  34491  ballotlemfcc  34492  plymulx0  34545  signstf0  34566  subfac1  35172  subfacp1lem1  35173  subfacp1lem5  35178  subfacp1lem6  35179  cvmliftlem10  35288  fwddifn0  36159  poimirlem2  37623  poimirlem3  37624  poimirlem4  37625  poimirlem6  37627  poimirlem7  37628  poimirlem13  37634  poimirlem14  37635  poimirlem16  37637  poimirlem17  37638  poimirlem18  37639  poimirlem19  37640  poimirlem20  37641  poimirlem21  37642  poimirlem22  37643  poimirlem26  37647  poimirlem28  37649  poimirlem31  37652  poimirlem32  37653  sdclem1  37744  fdc  37746  aks6d1c1  42111  sticksstones9  42149  sticksstones11  42151  trclfvdecomr  43724  k0004val0  44150  sumsnd  45027  fzdifsuc2  45315  dvnmul  45948  stoweidlem17  46022  carageniuncllem1  46526  caratheodorylem1  46531  hoidmvlelem3  46602  fzopredsuc  47328  sbgoldbo  47792  nnsum3primesprm  47795  stgr1  47964
  Copyright terms: Public domain W3C validator