![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 12674 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
2 | elfz3 12673 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
3 | eleq1 2847 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
4 | 2, 3 | syl5ibrcom 239 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
5 | 1, 4 | impbid2 218 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
6 | velsn 4414 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
7 | 5, 6 | syl6bbr 281 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
8 | 7 | eqrdv 2776 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {csn 4398 (class class class)co 6924 ℤcz 11733 ...cfz 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-pre-lttri 10348 ax-pre-lttrn 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-neg 10611 df-z 11734 df-uz 11998 df-fz 12649 |
This theorem is referenced by: fzsuc 12710 fzpred 12711 fzpr 12718 fzsuc2 12721 fz0sn 12763 fz0sn0fz1 12780 fzosn 12863 seqf1o 13165 hashsng 13480 sumsnf 14889 fsum1 14892 fsumm1 14896 fsum1p 14898 prodsn 15104 fprod1 15105 prodsnf 15106 fprod1p 15110 fprodabs 15116 fprodefsum 15236 phi1 15893 vdwlem8 16107 strle1 16376 telgsumfzs 18784 pmatcollpw3fi1 21011 imasdsf1olem 22597 ehl1eudis 23637 voliunlem1 23765 ply1termlem 24407 pntpbnd1 25744 0wlkons1 27541 iuninc 29958 fzspl 30128 esumfzf 30737 ballotlemfc0 31161 ballotlemfcc 31162 plymulx0 31232 signstf0 31253 subfac1 31767 subfacp1lem1 31768 subfacp1lem5 31773 subfacp1lem6 31774 cvmliftlem10 31883 fwddifn0 32868 poimirlem2 34046 poimirlem3 34047 poimirlem4 34048 poimirlem6 34050 poimirlem7 34051 poimirlem13 34057 poimirlem14 34058 poimirlem16 34060 poimirlem17 34061 poimirlem18 34062 poimirlem19 34063 poimirlem20 34064 poimirlem21 34065 poimirlem22 34066 poimirlem26 34070 poimirlem28 34072 poimirlem31 34075 poimirlem32 34076 sdclem1 34172 fdc 34174 trclfvdecomr 38991 k0004val0 39422 sumsnd 40132 fzdifsuc2 40447 dvnmul 41100 stoweidlem17 41175 carageniuncllem1 41676 caratheodorylem1 41681 hoidmvlelem3 41752 fzopredsuc 42379 sbgoldbo 42714 nnsum3primesprm 42717 |
Copyright terms: Public domain | W3C validator |