MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 13527
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 13496 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 13495 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2816 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 247 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 226 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4605 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2727 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589  (class class class)co 7387  cz 12529  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  fzsuc  13532  fzpred  13533  fzpr  13540  fzsuc2  13543  fz0sn  13588  fz0sn0fz1  13606  fzosn  13697  seqf1o  14008  hashsng  14334  sumsnf  15709  fsum1  15713  fsumm1  15717  fsum1p  15719  prodsn  15928  fprod1  15929  prodsnf  15930  fprod1p  15934  fprodabs  15940  fprodefsum  16061  phi1  16743  vdwlem8  16959  strle1  17128  telgsumfzs  19919  pmatcollpw3fi1  22675  imasdsf1olem  24261  ehl1eudis  25320  voliunlem1  25451  ply1termlem  26108  pntpbnd1  27497  0wlkons1  30050  iuninc  32489  fzspl  32712  esumfzf  34059  ballotlemfc0  34484  ballotlemfcc  34485  plymulx0  34538  signstf0  34559  subfac1  35165  subfacp1lem1  35166  subfacp1lem5  35171  subfacp1lem6  35172  cvmliftlem10  35281  fwddifn0  36152  poimirlem2  37616  poimirlem3  37617  poimirlem4  37618  poimirlem6  37620  poimirlem7  37621  poimirlem13  37627  poimirlem14  37628  poimirlem16  37630  poimirlem17  37631  poimirlem18  37632  poimirlem19  37633  poimirlem20  37634  poimirlem21  37635  poimirlem22  37636  poimirlem26  37640  poimirlem28  37642  poimirlem31  37645  poimirlem32  37646  sdclem1  37737  fdc  37739  aks6d1c1  42104  sticksstones9  42142  sticksstones11  42144  trclfvdecomr  43717  k0004val0  44143  sumsnd  45020  fzdifsuc2  45308  dvnmul  45941  stoweidlem17  46015  carageniuncllem1  46519  caratheodorylem1  46524  hoidmvlelem3  46595  fzopredsuc  47324  sbgoldbo  47788  nnsum3primesprm  47791  stgr1  47960
  Copyright terms: Public domain W3C validator