| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13474 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13473 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4601 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2727 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4585 (class class class)co 7369 ℤcz 12507 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-pre-lttri 11120 ax-pre-lttrn 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-neg 11386 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: fzsuc 13510 fzpred 13511 fzpr 13518 fzsuc2 13521 fz0sn 13566 fz0sn0fz1 13584 fzosn 13675 seqf1o 13986 hashsng 14312 sumsnf 15686 fsum1 15690 fsumm1 15694 fsum1p 15696 prodsn 15905 fprod1 15906 prodsnf 15907 fprod1p 15911 fprodabs 15917 fprodefsum 16038 phi1 16720 vdwlem8 16936 strle1 17105 telgsumfzs 19904 pmatcollpw3fi1 22709 imasdsf1olem 24295 ehl1eudis 25354 voliunlem1 25485 ply1termlem 26142 pntpbnd1 27531 0wlkons1 30101 iuninc 32540 fzspl 32763 esumfzf 34053 ballotlemfc0 34478 ballotlemfcc 34479 plymulx0 34532 signstf0 34553 subfac1 35159 subfacp1lem1 35160 subfacp1lem5 35165 subfacp1lem6 35166 cvmliftlem10 35275 fwddifn0 36146 poimirlem2 37610 poimirlem3 37611 poimirlem4 37612 poimirlem6 37614 poimirlem7 37615 poimirlem13 37621 poimirlem14 37622 poimirlem16 37624 poimirlem17 37625 poimirlem18 37626 poimirlem19 37627 poimirlem20 37628 poimirlem21 37629 poimirlem22 37630 poimirlem26 37634 poimirlem28 37636 poimirlem31 37639 poimirlem32 37640 sdclem1 37731 fdc 37733 aks6d1c1 42098 sticksstones9 42136 sticksstones11 42138 trclfvdecomr 43711 k0004val0 44137 sumsnd 45014 fzdifsuc2 45302 dvnmul 45935 stoweidlem17 46009 carageniuncllem1 46513 caratheodorylem1 46518 hoidmvlelem3 46589 fzopredsuc 47318 sbgoldbo 47782 nnsum3primesprm 47785 stgr1 47954 |
| Copyright terms: Public domain | W3C validator |