| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 13438 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
| 2 | elfz3 13437 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
| 4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
| 5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
| 6 | velsn 4593 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
| 8 | 7 | eqrdv 2727 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 (class class class)co 7349 ℤcz 12471 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: fzsuc 13474 fzpred 13475 fzpr 13482 fzsuc2 13485 fz0sn 13530 fz0sn0fz1 13548 fzosn 13639 seqf1o 13950 hashsng 14276 sumsnf 15650 fsum1 15654 fsumm1 15658 fsum1p 15660 prodsn 15869 fprod1 15870 prodsnf 15871 fprod1p 15875 fprodabs 15881 fprodefsum 16002 phi1 16684 vdwlem8 16900 strle1 17069 telgsumfzs 19868 pmatcollpw3fi1 22673 imasdsf1olem 24259 ehl1eudis 25318 voliunlem1 25449 ply1termlem 26106 pntpbnd1 27495 0wlkons1 30069 iuninc 32509 fzspl 32741 esumfzf 34052 ballotlemfc0 34477 ballotlemfcc 34478 plymulx0 34531 signstf0 34552 subfac1 35171 subfacp1lem1 35172 subfacp1lem5 35177 subfacp1lem6 35178 cvmliftlem10 35287 fwddifn0 36158 poimirlem2 37622 poimirlem3 37623 poimirlem4 37624 poimirlem6 37626 poimirlem7 37627 poimirlem13 37633 poimirlem14 37634 poimirlem16 37636 poimirlem17 37637 poimirlem18 37638 poimirlem19 37639 poimirlem20 37640 poimirlem21 37641 poimirlem22 37642 poimirlem26 37646 poimirlem28 37648 poimirlem31 37651 poimirlem32 37652 sdclem1 37743 fdc 37745 aks6d1c1 42109 sticksstones9 42147 sticksstones11 42149 trclfvdecomr 43721 k0004val0 44147 sumsnd 45024 fzdifsuc2 45312 dvnmul 45944 stoweidlem17 46018 carageniuncllem1 46522 caratheodorylem1 46527 hoidmvlelem3 46598 fzopredsuc 47327 sbgoldbo 47791 nnsum3primesprm 47794 stgr1 47965 |
| Copyright terms: Public domain | W3C validator |