Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 13276 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
2 | elfz3 13275 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
3 | eleq1 2827 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
4 | 2, 3 | syl5ibrcom 246 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
5 | 1, 4 | impbid2 225 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
6 | velsn 4578 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
8 | 7 | eqrdv 2737 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4562 (class class class)co 7284 ℤcz 12328 ...cfz 13248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-neg 11217 df-z 12329 df-uz 12592 df-fz 13249 |
This theorem is referenced by: fzsuc 13312 fzpred 13313 fzpr 13320 fzsuc2 13323 fz0sn 13365 fz0sn0fz1 13382 fzosn 13467 seqf1o 13773 hashsng 14093 sumsnf 15464 fsum1 15468 fsumm1 15472 fsum1p 15474 prodsn 15681 fprod1 15682 prodsnf 15683 fprod1p 15687 fprodabs 15693 fprodefsum 15813 phi1 16483 vdwlem8 16698 strle1 16868 telgsumfzs 19599 pmatcollpw3fi1 21946 imasdsf1olem 23535 ehl1eudis 24593 voliunlem1 24723 ply1termlem 25373 pntpbnd1 26743 0wlkons1 28494 iuninc 30909 fzspl 31120 esumfzf 32046 ballotlemfc0 32468 ballotlemfcc 32469 plymulx0 32535 signstf0 32556 subfac1 33149 subfacp1lem1 33150 subfacp1lem5 33155 subfacp1lem6 33156 cvmliftlem10 33265 fwddifn0 34475 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem6 35792 poimirlem7 35793 poimirlem13 35799 poimirlem14 35800 poimirlem16 35802 poimirlem17 35803 poimirlem18 35804 poimirlem19 35805 poimirlem20 35806 poimirlem21 35807 poimirlem22 35808 poimirlem26 35812 poimirlem28 35814 poimirlem31 35817 poimirlem32 35818 sdclem1 35910 fdc 35912 sticksstones9 40117 sticksstones11 40119 metakunt18 40149 metakunt20 40151 metakunt24 40155 trclfvdecomr 41343 k0004val0 41771 sumsnd 42576 fzdifsuc2 42856 dvnmul 43491 stoweidlem17 43565 carageniuncllem1 44066 caratheodorylem1 44071 hoidmvlelem3 44142 fzopredsuc 44826 sbgoldbo 45250 nnsum3primesprm 45253 |
Copyright terms: Public domain | W3C validator |