MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsn Structured version   Visualization version   GIF version

Theorem fzsn 13606
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})

Proof of Theorem fzsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 13575 . . . 4 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
2 elfz3 13574 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
3 eleq1 2829 . . . . 5 (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀)))
42, 3syl5ibrcom 247 . . . 4 (𝑀 ∈ ℤ → (𝑘 = 𝑀𝑘 ∈ (𝑀...𝑀)))
51, 4impbid2 226 . . 3 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀))
6 velsn 4642 . . 3 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
75, 6bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀}))
87eqrdv 2735 1 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4626  (class class class)co 7431  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  fzsuc  13611  fzpred  13612  fzpr  13619  fzsuc2  13622  fz0sn  13667  fz0sn0fz1  13685  fzosn  13775  seqf1o  14084  hashsng  14408  sumsnf  15779  fsum1  15783  fsumm1  15787  fsum1p  15789  prodsn  15998  fprod1  15999  prodsnf  16000  fprod1p  16004  fprodabs  16010  fprodefsum  16131  phi1  16810  vdwlem8  17026  strle1  17195  telgsumfzs  20007  pmatcollpw3fi1  22794  imasdsf1olem  24383  ehl1eudis  25454  voliunlem1  25585  ply1termlem  26242  pntpbnd1  27630  0wlkons1  30140  iuninc  32573  fzspl  32791  esumfzf  34070  ballotlemfc0  34495  ballotlemfcc  34496  plymulx0  34562  signstf0  34583  subfac1  35183  subfacp1lem1  35184  subfacp1lem5  35189  subfacp1lem6  35190  cvmliftlem10  35299  fwddifn0  36165  poimirlem2  37629  poimirlem3  37630  poimirlem4  37631  poimirlem6  37633  poimirlem7  37634  poimirlem13  37640  poimirlem14  37641  poimirlem16  37643  poimirlem17  37644  poimirlem18  37645  poimirlem19  37646  poimirlem20  37647  poimirlem21  37648  poimirlem22  37649  poimirlem26  37653  poimirlem28  37655  poimirlem31  37658  poimirlem32  37659  sdclem1  37750  fdc  37752  aks6d1c1  42117  sticksstones9  42155  sticksstones11  42157  metakunt18  42223  metakunt20  42225  metakunt24  42229  trclfvdecomr  43741  k0004val0  44167  sumsnd  45031  fzdifsuc2  45322  dvnmul  45958  stoweidlem17  46032  carageniuncllem1  46536  caratheodorylem1  46541  hoidmvlelem3  46612  fzopredsuc  47335  sbgoldbo  47774  nnsum3primesprm  47777  stgr1  47928
  Copyright terms: Public domain W3C validator