![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 13595 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
2 | elfz3 13594 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
3 | eleq1 2832 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
4 | 2, 3 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
5 | 1, 4 | impbid2 226 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
6 | velsn 4664 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
8 | 7 | eqrdv 2738 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 (class class class)co 7448 ℤcz 12639 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzsuc 13631 fzpred 13632 fzpr 13639 fzsuc2 13642 fz0sn 13684 fz0sn0fz1 13702 fzosn 13787 seqf1o 14094 hashsng 14418 sumsnf 15791 fsum1 15795 fsumm1 15799 fsum1p 15801 prodsn 16010 fprod1 16011 prodsnf 16012 fprod1p 16016 fprodabs 16022 fprodefsum 16143 phi1 16820 vdwlem8 17035 strle1 17205 telgsumfzs 20031 pmatcollpw3fi1 22815 imasdsf1olem 24404 ehl1eudis 25473 voliunlem1 25604 ply1termlem 26262 pntpbnd1 27648 0wlkons1 30153 iuninc 32583 fzspl 32795 esumfzf 34033 ballotlemfc0 34457 ballotlemfcc 34458 plymulx0 34524 signstf0 34545 subfac1 35146 subfacp1lem1 35147 subfacp1lem5 35152 subfacp1lem6 35153 cvmliftlem10 35262 fwddifn0 36128 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem13 37593 poimirlem14 37594 poimirlem16 37596 poimirlem17 37597 poimirlem18 37598 poimirlem19 37599 poimirlem20 37600 poimirlem21 37601 poimirlem22 37602 poimirlem26 37606 poimirlem28 37608 poimirlem31 37611 poimirlem32 37612 sdclem1 37703 fdc 37705 aks6d1c1 42073 sticksstones9 42111 sticksstones11 42113 metakunt18 42179 metakunt20 42181 metakunt24 42185 trclfvdecomr 43690 k0004val0 44116 sumsnd 44926 fzdifsuc2 45225 dvnmul 45864 stoweidlem17 45938 carageniuncllem1 46442 caratheodorylem1 46447 hoidmvlelem3 46518 fzopredsuc 47238 sbgoldbo 47661 nnsum3primesprm 47664 |
Copyright terms: Public domain | W3C validator |