MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccssred Structured version   Visualization version   GIF version

Theorem iccssred 13095
Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccssred.1 (𝜑𝐴 ∈ ℝ)
iccssred.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iccssred (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)

Proof of Theorem iccssred
StepHypRef Expression
1 iccssred.1 . 2 (𝜑𝐴 ∈ ℝ)
2 iccssred.2 . 2 (𝜑𝐵 ∈ ℝ)
3 iccssre 13090 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  (class class class)co 7255  cr 10801  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015
This theorem is referenced by:  dvmptresicc  24985  iccshift  42946  eliccelioc  42949  limciccioolb  43052  limcicciooub  43068  icccncfext  43318  cncfiooicclem1  43324  itgcoscmulx  43400  ibliooicc  43402  itgsincmulx  43405  itgsubsticclem  43406  itgiccshift  43411  itgperiod  43412  itgsbtaddcnst  43413  dirkeritg  43533  fourierdlem20  43558  fourierdlem25  43563  fourierdlem39  43577  fourierdlem40  43578  fourierdlem42  43580  fourierdlem46  43583  fourierdlem50  43587  fourierdlem51  43588  fourierdlem52  43589  fourierdlem54  43591  fourierdlem58  43595  fourierdlem64  43601  fourierdlem68  43605  fourierdlem73  43610  fourierdlem74  43611  fourierdlem75  43612  fourierdlem76  43613  fourierdlem78  43615  fourierdlem79  43616  fourierdlem80  43617  fourierdlem81  43618  fourierdlem84  43621  fourierdlem88  43625  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  fourierdlem100  43637  fourierdlem103  43640  fourierdlem104  43641  fourierdlem107  43644  fourierdlem111  43648  fourierdlem112  43649  etransclem18  43683  etransclem46  43711  rrxsnicc  43731  hoidmv1lelem1  44019  hoidmv1lelem3  44021  hoidmvlelem1  44023  hoidmvlelem2  44024  hoidmvlelem4  44026
  Copyright terms: Public domain W3C validator