MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6 27551
Description: Lemma for pntrlog2bnd 27552. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 13397 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13017 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11241 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13427 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11388 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13095 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27531 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7078 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15460 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1710relogcld 26589 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 11270 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
19 2re 12319 . . . . . . . . . 10 2 ∈ ℝ
2019a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
212, 8rplogcld 26595 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2220, 21rerpdivcld 13087 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
23 fzfid 13996 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2410adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
25 elfznn 13575 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2625adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2726nnrpd 13054 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2824, 27rpdivcld 13073 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2912ffvelcdmi 7078 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3130recnd 11268 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3231abscld 15460 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3327relogcld 26589 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
3432, 33remulcld 11270 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3523, 34fsumrecl 15755 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3622, 35remulcld 11270 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3718, 36resubcld 11670 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
3837recnd 11268 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
39 fzfid 13996 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ∈ Fin)
40 ssun2 4159 . . . . . . . . . . 11 (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
41 pntsval.1 . . . . . . . . . . . 12 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
42 pntrlog2bnd.t . . . . . . . . . . . 12 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝐴)
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 27550 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
4840, 47sseqtrrid 4007 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
4948sselda 3963 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
5049, 34syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5139, 50fsumrecl 15755 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5222, 51remulcld 11270 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
5352recnd 11268 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
542recnd 11268 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
5510rpne0d 13061 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
5638, 53, 54, 55divdird 12060 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)))
5718recnd 11268 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5836recnd 11268 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
5957, 58, 53subsubd 11627 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6022recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
6135recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6251recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6360, 61, 62subdid 11698 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
64 fzfid 13996 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
65 ssun1 4158 . . . . . . . . . . . . . . 15 (1...(⌊‘(𝑥 / 𝐴))) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
6665, 47sseqtrrid 4007 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ⊆ (1...(⌊‘𝑥)))
6766sselda 3963 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ (1...(⌊‘𝑥)))
6867, 34syldan 591 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
6964, 68fsumrecl 15755 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7069recnd 11268 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
713a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ+)
7245, 71, 46rpgecld 13095 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
742, 73rerpdivcld 13087 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
75 reflcl 13818 . . . . . . . . . . . . . 14 ((𝑥 / 𝐴) ∈ ℝ → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7776ltp1d 12177 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1))
78 fzdisj 13573 . . . . . . . . . . . 12 ((⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
7977, 78syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
8034recnd 11268 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
8179, 47, 23, 80fsumsplit 15762 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8270, 62, 81mvrraddd 11654 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
8382oveq2d 7426 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8463, 83eqtr3d 2773 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8584oveq2d 7426 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8659, 85eqtr3d 2773 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8786oveq1d 7425 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8856, 87eqtr3d 2773 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8988mpteq2dva 5219 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
9037, 10rerpdivcld 13087 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
9152, 10rerpdivcld 13087 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ∈ ℝ)
9241, 11, 42, 43, 44pntrlog2bndlem5 27549 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
93 ioossre 13429 . . . . 5 (1(,)+∞) ⊆ ℝ
9493a1i 11 . . . 4 (𝜑 → (1(,)+∞) ⊆ ℝ)
95 1red 11241 . . . 4 (𝜑 → 1 ∈ ℝ)
9619a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
9743rpred 13056 . . . . . 6 (𝜑𝐵 ∈ ℝ)
9872relogcld 26589 . . . . . . 7 (𝜑 → (log‘𝐴) ∈ ℝ)
9998, 95readdcld 11269 . . . . . 6 (𝜑 → ((log‘𝐴) + 1) ∈ ℝ)
10097, 99remulcld 11270 . . . . 5 (𝜑 → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
10196, 100remulcld 11270 . . . 4 (𝜑 → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
10251, 21rerpdivcld 13087 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
10397adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
10473relogcld 26589 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℝ)
105104, 5readdcld 11269 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℝ)
106103, 105remulcld 11270 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
1072, 106remulcld 11270 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
108 2rp 13018 . . . . . . . . . 10 2 ∈ ℝ+
109108a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
110109rpge0d 13060 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
111103, 2remulcld 11270 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℝ)
11249, 25syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113112nnrecred 12296 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
11439, 113fsumrecl 15755 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
115111, 114remulcld 11270 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
11621adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ+)
11750, 116rerpdivcld 13087 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
118103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
1192adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
120118, 119remulcld 11270 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℝ)
121120, 113remulcld 11270 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) · (1 / 𝑛)) ∈ ℝ)
12249, 32syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
123119, 112nndivred 12299 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
124118, 123remulcld 11270 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) ∈ ℝ)
12549, 27syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
126125relogcld 26589 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
12710adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
128127relogcld 26589 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ)
12949, 31syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
130129absge0d 15468 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
131 elfzle2 13550 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) → 𝑛 ≤ (⌊‘𝑥))
132131adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ (⌊‘𝑥))
133112nnzd 12620 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
134 flge 13827 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
135119, 133, 134syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
136132, 135mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛𝑥)
137125, 127logled 26593 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥 ↔ (log‘𝑛) ≤ (log‘𝑥)))
138136, 137mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ≤ (log‘𝑥))
139126, 128, 122, 130, 138lemul2ad 12187 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥)))
14050, 122, 116ledivmul2d 13110 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))) ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥))))
141139, 140mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
142123recnd 11268 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
14349, 28syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
144143rpne0d 13061 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
145129, 142, 144absdivd 15479 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
14610rpge0d 13060 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
147146adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ 𝑥)
148119, 125, 147divge0d 13096 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
149123, 148absidd 15446 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
150149oveq2d 7426 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
151145, 150eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
152 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
153 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
154152, 153oveq12d 7428 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
155154fveq2d 6885 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
156155breq1d 5134 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
15744ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
158156, 157, 143rspcdva 3607 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
159151, 158eqbrtrrd 5148 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵)
160122, 118, 143ledivmul2d 13110 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵 ↔ (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛))))
161159, 160mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛)))
162117, 122, 124, 141, 161letrd 11397 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝐵 · (𝑥 / 𝑛)))
163118recnd 11268 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
16454adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
165112nncnd 12261 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
166112nnne0d 12295 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≠ 0)
167163, 164, 165, 166divassd 12057 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = (𝐵 · (𝑥 / 𝑛)))
168163, 164mulcld 11260 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℂ)
169168, 165, 166divrecd 12025 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = ((𝐵 · 𝑥) · (1 / 𝑛)))
170167, 169eqtr3d 2773 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) = ((𝐵 · 𝑥) · (1 / 𝑛)))
171162, 170breqtrd 5150 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · (1 / 𝑛)))
17239, 117, 121, 171fsumle 15820 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
17317recnd 11268 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
17449, 80syldan 591 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
17521rpne0d 13061 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
17639, 173, 174, 175fsumdivc 15807 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)))
177103recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
178177, 54mulcld 11260 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℂ)
179113recnd 11268 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
18039, 178, 179fsummulc2 15805 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
181172, 176, 1803brtr4d 5156 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
18243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
183182rpge0d 13060 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
184103, 2, 183, 146mulge0d 11819 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐵 · 𝑥))
18526nnrecred 12296 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
18623, 185fsumrecl 15755 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
18717, 104resubcld 11670 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ∈ ℝ)
18817, 5readdcld 11269 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
18967, 185syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
19064, 189fsumrecl 15755 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
191 harmonicubnd 26977 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1922, 9, 191syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
19310, 73relogdivd 26592 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) = ((log‘𝑥) − (log‘𝐴)))
19410, 73rpdivcld 13073 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
195 harmoniclbnd 26976 . . . . . . . . . . . . . . 15 ((𝑥 / 𝐴) ∈ ℝ+ → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
197193, 196eqbrtrrd 5148 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
198186, 187, 188, 190, 192, 197le2subd 11862 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) ≤ (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))))
19967, 25syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
200199nnrecred 12296 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
20164, 200fsumrecl 15755 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
202201recnd 11268 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℂ)
203114recnd 11268 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ)
20426nncnd 12261 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
20526nnne0d 12295 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
206204, 205reccld 12015 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
20779, 47, 23, 206fsumsplit 15762 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
208202, 203, 207mvrladdd 11655 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))
209 1cnd 11235 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
210104recnd 11268 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℂ)
211173, 209, 210pnncand 11638 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = (1 + (log‘𝐴)))
212209, 210, 211comraddd 11454 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = ((log‘𝐴) + 1))
213198, 208, 2123brtr3d 5155 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝐴) + 1))
214114, 105, 111, 184, 213lemul2ad 12187 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ ((𝐵 · 𝑥) · ((log‘𝐴) + 1)))
215105recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
216177, 54, 215mulassd 11263 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝐵 · (𝑥 · ((log‘𝐴) + 1))))
217177, 54, 215mul12d 11449 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · (𝑥 · ((log‘𝐴) + 1))) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
218216, 217eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
219214, 218breqtrd 5150 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
220102, 115, 107, 181, 219letrd 11397 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
221102, 107, 20, 110, 220lemul2ad 12187 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) ≤ (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
222 2cnd 12323 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
223222, 173, 62, 175div32d 12045 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))))
224210, 209addcld 11259 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
225177, 224mulcld 11260 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℂ)
22654, 222, 225mul12d 11449 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))) = (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
227221, 223, 2263brtr4d 5156 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))))
228101adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
22952, 228, 10ledivmuld 13109 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))) ↔ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1))))))
230227, 229mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
231230adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
23294, 91, 95, 101, 231ello1d 15544 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) ∈ ≤𝑂(1))
23390, 91, 92, 232lo1add 15648 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) ∈ ≤𝑂(1))
23489, 233eqeltrrd 2836 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cun 3929  cin 3930  wss 3931  c0 4313  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  cz 12593  +crp 13013  (,)cioo 13367  ...cfz 13529  cfl 13812  abscabs 15258  ≤𝑂(1)clo1 15508  Σcsu 15707  logclog 26520  Λcvma 27059  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-o1 15511  df-lo1 15512  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-cxp 26523  df-atan 26834  df-em 26960  df-cht 27064  df-vma 27065  df-chp 27066  df-ppi 27067  df-mu 27068
This theorem is referenced by:  pntrlog2bnd  27552
  Copyright terms: Public domain W3C validator