MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6 27503
Description: Lemma for pntrlog2bnd 27504. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 13378 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13002 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11237 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13407 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11384 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13079 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27483 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7087 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 11264 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15407 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1710relogcld 26544 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 11266 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
19 2re 12308 . . . . . . . . . 10 2 ∈ ℝ
2019a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
212, 8rplogcld 26550 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2220, 21rerpdivcld 13071 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
23 fzfid 13962 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2410adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
25 elfznn 13554 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2625adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2726nnrpd 13038 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2824, 27rpdivcld 13057 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2912ffvelcdmi 7087 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3130recnd 11264 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3231abscld 15407 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3327relogcld 26544 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
3432, 33remulcld 11266 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3523, 34fsumrecl 15704 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3622, 35remulcld 11266 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3718, 36resubcld 11664 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
3837recnd 11264 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
39 fzfid 13962 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ∈ Fin)
40 ssun2 4169 . . . . . . . . . . 11 (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
41 pntsval.1 . . . . . . . . . . . 12 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
42 pntrlog2bnd.t . . . . . . . . . . . 12 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝐴)
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 27502 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
4840, 47sseqtrrid 4031 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
4948sselda 3978 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
5049, 34syldan 590 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5139, 50fsumrecl 15704 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5222, 51remulcld 11266 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
5352recnd 11264 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
542recnd 11264 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
5510rpne0d 13045 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
5638, 53, 54, 55divdird 12050 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)))
5718recnd 11264 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5836recnd 11264 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
5957, 58, 53subsubd 11621 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6022recnd 11264 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
6135recnd 11264 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6251recnd 11264 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6360, 61, 62subdid 11692 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
64 fzfid 13962 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
65 ssun1 4168 . . . . . . . . . . . . . . 15 (1...(⌊‘(𝑥 / 𝐴))) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
6665, 47sseqtrrid 4031 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ⊆ (1...(⌊‘𝑥)))
6766sselda 3978 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ (1...(⌊‘𝑥)))
6867, 34syldan 590 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
6964, 68fsumrecl 15704 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7069recnd 11264 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
713a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ+)
7245, 71, 46rpgecld 13079 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
742, 73rerpdivcld 13071 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
75 reflcl 13785 . . . . . . . . . . . . . 14 ((𝑥 / 𝐴) ∈ ℝ → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7776ltp1d 12166 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1))
78 fzdisj 13552 . . . . . . . . . . . 12 ((⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
7977, 78syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
8034recnd 11264 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
8179, 47, 23, 80fsumsplit 15711 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8270, 62, 81mvrraddd 11648 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
8382oveq2d 7430 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8463, 83eqtr3d 2769 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8584oveq2d 7430 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8659, 85eqtr3d 2769 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8786oveq1d 7429 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8856, 87eqtr3d 2769 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8988mpteq2dva 5242 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
9037, 10rerpdivcld 13071 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
9152, 10rerpdivcld 13071 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ∈ ℝ)
9241, 11, 42, 43, 44pntrlog2bndlem5 27501 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
93 ioossre 13409 . . . . 5 (1(,)+∞) ⊆ ℝ
9493a1i 11 . . . 4 (𝜑 → (1(,)+∞) ⊆ ℝ)
95 1red 11237 . . . 4 (𝜑 → 1 ∈ ℝ)
9619a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
9743rpred 13040 . . . . . 6 (𝜑𝐵 ∈ ℝ)
9872relogcld 26544 . . . . . . 7 (𝜑 → (log‘𝐴) ∈ ℝ)
9998, 95readdcld 11265 . . . . . 6 (𝜑 → ((log‘𝐴) + 1) ∈ ℝ)
10097, 99remulcld 11266 . . . . 5 (𝜑 → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
10196, 100remulcld 11266 . . . 4 (𝜑 → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
10251, 21rerpdivcld 13071 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
10397adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
10473relogcld 26544 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℝ)
105104, 5readdcld 11265 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℝ)
106103, 105remulcld 11266 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
1072, 106remulcld 11266 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
108 2rp 13003 . . . . . . . . . 10 2 ∈ ℝ+
109108a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
110109rpge0d 13044 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
111103, 2remulcld 11266 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℝ)
11249, 25syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113112nnrecred 12285 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
11439, 113fsumrecl 15704 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
115111, 114remulcld 11266 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
11621adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ+)
11750, 116rerpdivcld 13071 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
118103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
1192adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
120118, 119remulcld 11266 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℝ)
121120, 113remulcld 11266 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) · (1 / 𝑛)) ∈ ℝ)
12249, 32syldan 590 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
123119, 112nndivred 12288 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
124118, 123remulcld 11266 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) ∈ ℝ)
12549, 27syldan 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
126125relogcld 26544 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
12710adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
128127relogcld 26544 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ)
12949, 31syldan 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
130129absge0d 15415 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
131 elfzle2 13529 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) → 𝑛 ≤ (⌊‘𝑥))
132131adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ (⌊‘𝑥))
133112nnzd 12607 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
134 flge 13794 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
135119, 133, 134syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
136132, 135mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛𝑥)
137125, 127logled 26548 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥 ↔ (log‘𝑛) ≤ (log‘𝑥)))
138136, 137mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ≤ (log‘𝑥))
139126, 128, 122, 130, 138lemul2ad 12176 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥)))
14050, 122, 116ledivmul2d 13094 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))) ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥))))
141139, 140mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
142123recnd 11264 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
14349, 28syldan 590 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
144143rpne0d 13045 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
145129, 142, 144absdivd 15426 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
14610rpge0d 13044 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
147146adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ 𝑥)
148119, 125, 147divge0d 13080 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
149123, 148absidd 15393 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
150149oveq2d 7430 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
151145, 150eqtrd 2767 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
152 fveq2 6891 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
153 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
154152, 153oveq12d 7432 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
155154fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
156155breq1d 5152 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
15744ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
158156, 157, 143rspcdva 3608 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
159151, 158eqbrtrrd 5166 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵)
160122, 118, 143ledivmul2d 13094 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵 ↔ (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛))))
161159, 160mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛)))
162117, 122, 124, 141, 161letrd 11393 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝐵 · (𝑥 / 𝑛)))
163118recnd 11264 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
16454adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
165112nncnd 12250 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
166112nnne0d 12284 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≠ 0)
167163, 164, 165, 166divassd 12047 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = (𝐵 · (𝑥 / 𝑛)))
168163, 164mulcld 11256 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℂ)
169168, 165, 166divrecd 12015 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = ((𝐵 · 𝑥) · (1 / 𝑛)))
170167, 169eqtr3d 2769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) = ((𝐵 · 𝑥) · (1 / 𝑛)))
171162, 170breqtrd 5168 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · (1 / 𝑛)))
17239, 117, 121, 171fsumle 15769 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
17317recnd 11264 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
17449, 80syldan 590 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
17521rpne0d 13045 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
17639, 173, 174, 175fsumdivc 15756 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)))
177103recnd 11264 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
178177, 54mulcld 11256 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℂ)
179113recnd 11264 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
18039, 178, 179fsummulc2 15754 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
181172, 176, 1803brtr4d 5174 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
18243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
183182rpge0d 13044 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
184103, 2, 183, 146mulge0d 11813 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐵 · 𝑥))
18526nnrecred 12285 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
18623, 185fsumrecl 15704 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
18717, 104resubcld 11664 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ∈ ℝ)
18817, 5readdcld 11265 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
18967, 185syldan 590 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
19064, 189fsumrecl 15704 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
191 harmonicubnd 26929 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1922, 9, 191syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
19310, 73relogdivd 26547 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) = ((log‘𝑥) − (log‘𝐴)))
19410, 73rpdivcld 13057 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
195 harmoniclbnd 26928 . . . . . . . . . . . . . . 15 ((𝑥 / 𝐴) ∈ ℝ+ → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
197193, 196eqbrtrrd 5166 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
198186, 187, 188, 190, 192, 197le2subd 11856 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) ≤ (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))))
19967, 25syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
200199nnrecred 12285 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
20164, 200fsumrecl 15704 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
202201recnd 11264 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℂ)
203114recnd 11264 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ)
20426nncnd 12250 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
20526nnne0d 12284 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
206204, 205reccld 12005 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
20779, 47, 23, 206fsumsplit 15711 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
208202, 203, 207mvrladdd 11649 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))
209 1cnd 11231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
210104recnd 11264 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℂ)
211173, 209, 210pnncand 11632 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = (1 + (log‘𝐴)))
212209, 210, 211comraddd 11450 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = ((log‘𝐴) + 1))
213198, 208, 2123brtr3d 5173 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝐴) + 1))
214114, 105, 111, 184, 213lemul2ad 12176 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ ((𝐵 · 𝑥) · ((log‘𝐴) + 1)))
215105recnd 11264 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
216177, 54, 215mulassd 11259 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝐵 · (𝑥 · ((log‘𝐴) + 1))))
217177, 54, 215mul12d 11445 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · (𝑥 · ((log‘𝐴) + 1))) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
218216, 217eqtrd 2767 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
219214, 218breqtrd 5168 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
220102, 115, 107, 181, 219letrd 11393 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
221102, 107, 20, 110, 220lemul2ad 12176 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) ≤ (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
222 2cnd 12312 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
223222, 173, 62, 175div32d 12035 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))))
224210, 209addcld 11255 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
225177, 224mulcld 11256 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℂ)
22654, 222, 225mul12d 11445 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))) = (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
227221, 223, 2263brtr4d 5174 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))))
228101adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
22952, 228, 10ledivmuld 13093 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))) ↔ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1))))))
230227, 229mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
231230adantrr 716 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
23294, 91, 95, 101, 231ello1d 15491 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) ∈ ≤𝑂(1))
23390, 91, 92, 232lo1add 15595 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) ∈ ≤𝑂(1))
23489, 233eqeltrrd 2829 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  cun 3942  cin 3943  wss 3944  c0 4318  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  0cc0 11130  1c1 11131   + caddc 11133   · cmul 11135  +∞cpnf 11267   < clt 11270  cle 11271  cmin 11466   / cdiv 11893  cn 12234  2c2 12289  cz 12580  +crp 12998  (,)cioo 13348  ...cfz 13508  cfl 13779  abscabs 15205  ≤𝑂(1)clo1 15455  Σcsu 15656  logclog 26475  Λcvma 27011  ψcchp 27012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-xnn0 12567  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-o1 15458  df-lo1 15459  df-sum 15657  df-ef 16035  df-e 16036  df-sin 16037  df-cos 16038  df-tan 16039  df-pi 16040  df-dvds 16223  df-gcd 16461  df-prm 16634  df-pc 16797  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-cmp 23278  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-limc 25782  df-dv 25783  df-ulm 26300  df-log 26477  df-cxp 26478  df-atan 26786  df-em 26912  df-cht 27016  df-vma 27017  df-chp 27018  df-ppi 27019  df-mu 27020
This theorem is referenced by:  pntrlog2bnd  27504
  Copyright terms: Public domain W3C validator