Proof of Theorem pntrlog2bndlem6
Step | Hyp | Ref
| Expression |
1 | | elioore 13038 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
2 | 1 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) |
3 | | 1rp 12663 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ+) |
5 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) |
6 | | eliooord 13067 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
7 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
8 | 7 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
9 | 5, 2, 8 | ltled 11053 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
10 | 2, 4, 9 | rpgecld 12740 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) |
11 | | pntrlog2bnd.r |
. . . . . . . . . . . . 13
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
12 | 11 | pntrf 26616 |
. . . . . . . . . . . 12
⊢ 𝑅:ℝ+⟶ℝ |
13 | 12 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
14 | 10, 13 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℝ) |
15 | 14 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℂ) |
16 | 15 | abscld 15076 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(𝑅‘𝑥)) ∈
ℝ) |
17 | 10 | relogcld 25683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) |
18 | 16, 17 | remulcld 10936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℝ) |
19 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ) |
21 | 2, 8 | rplogcld 25689 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
22 | 20, 21 | rerpdivcld 12732 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℝ) |
23 | | fzfid 13621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) |
24 | 10 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
25 | | elfznn 13214 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
26 | 25 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
27 | 26 | nnrpd 12699 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
28 | 24, 27 | rpdivcld 12718 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
29 | 12 | ffvelrni 6942 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
31 | 30 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
32 | 31 | abscld 15076 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
33 | 27 | relogcld 25683 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℝ) |
34 | 32, 33 | remulcld 10936 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
35 | 23, 34 | fsumrecl 15374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
36 | 22, 35 | remulcld 10936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
37 | 18, 36 | resubcld 11333 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ) |
38 | 37 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ) |
39 | | fzfid 13621 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ∈ Fin) |
40 | | ssun2 4103 |
. . . . . . . . . . 11
⊢
(((⌊‘(𝑥
/ 𝐴)) +
1)...(⌊‘𝑥))
⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) |
41 | | pntsval.1 |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈
(1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
42 | | pntrlog2bnd.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
43 | | pntrlog2bndlem5.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
44 | | pntrlog2bndlem5.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ ℝ+
(abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
45 | | pntrlog2bndlem6.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
46 | | pntrlog2bndlem6.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝐴) |
47 | 41, 11, 42, 43, 44, 45, 46 | pntrlog2bndlem6a 26635 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥)) =
((1...(⌊‘(𝑥 /
𝐴))) ∪
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
48 | 40, 47 | sseqtrrid 3970 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆
(1...(⌊‘𝑥))) |
49 | 48 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥))) |
50 | 49, 34 | syldan 590 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
51 | 39, 50 | fsumrecl 15374 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
52 | 22, 51 | remulcld 10936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
53 | 52 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
54 | 2 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) |
55 | 10 | rpne0d 12706 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) |
56 | 38, 53, 54, 55 | divdird 11719 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) |
57 | 18 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℂ) |
58 | 36 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
59 | 57, 58, 53 | subsubd 11290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
60 | 22 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℂ) |
61 | 35 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
62 | 51 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
63 | 60, 61, 62 | subdid 11361 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
64 | | fzfid 13621 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘(𝑥 /
𝐴))) ∈
Fin) |
65 | | ssun1 4102 |
. . . . . . . . . . . . . . 15
⊢
(1...(⌊‘(𝑥 / 𝐴))) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) |
66 | 65, 47 | sseqtrrid 3970 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘(𝑥 /
𝐴))) ⊆
(1...(⌊‘𝑥))) |
67 | 66 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → 𝑛 ∈
(1...(⌊‘𝑥))) |
68 | 67, 34 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) →
((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
69 | 64, 68 | fsumrecl 15374 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
70 | 69 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
71 | 3 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈
ℝ+) |
72 | 45, 71, 46 | rpgecld 12740 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ+) |
74 | 2, 73 | rerpdivcld 12732 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
75 | | reflcl 13444 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 / 𝐴) ∈ ℝ →
(⌊‘(𝑥 / 𝐴)) ∈
ℝ) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘(𝑥 / 𝐴)) ∈
ℝ) |
77 | 76 | ltp1d 11835 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1)) |
78 | | fzdisj 13212 |
. . . . . . . . . . . 12
⊢
((⌊‘(𝑥 /
𝐴)) <
((⌊‘(𝑥 / 𝐴)) + 1) →
((1...(⌊‘(𝑥 /
𝐴))) ∩
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((1...(⌊‘(𝑥 /
𝐴))) ∩
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅) |
80 | 34 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
81 | 79, 47, 23, 80 | fsumsplit 15381 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
82 | 70, 62, 81 | mvrraddd 11317 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
83 | 82 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
84 | 63, 83 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
85 | 84 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
86 | 59, 85 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
87 | 86 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
88 | 56, 87 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
89 | 88 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))) |
90 | 37, 10 | rerpdivcld 12732 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ) |
91 | 52, 10 | rerpdivcld 12732 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ∈ ℝ) |
92 | 41, 11, 42, 43, 44 | pntrlog2bndlem5 26634 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |
93 | | ioossre 13069 |
. . . . 5
⊢
(1(,)+∞) ⊆ ℝ |
94 | 93 | a1i 11 |
. . . 4
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ) |
95 | | 1red 10907 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
96 | 19 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ) |
97 | 43 | rpred 12701 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
98 | 72 | relogcld 25683 |
. . . . . . 7
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
99 | 98, 95 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → ((log‘𝐴) + 1) ∈
ℝ) |
100 | 97, 99 | remulcld 10936 |
. . . . 5
⊢ (𝜑 → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ) |
101 | 96, 100 | remulcld 10936 |
. . . 4
⊢ (𝜑 → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈
ℝ) |
102 | 51, 21 | rerpdivcld 12732 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ) |
103 | 97 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ) |
104 | 73 | relogcld 25683 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝐴) ∈
ℝ) |
105 | 104, 5 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℝ) |
106 | 103, 105 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈
ℝ) |
107 | 2, 106 | remulcld 10936 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ) |
108 | | 2rp 12664 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
109 | 108 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ+) |
110 | 109 | rpge0d 12705 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
2) |
111 | 103, 2 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℝ) |
112 | 49, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
113 | 112 | nnrecred 11954 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ) |
114 | 39, 113 | fsumrecl 15374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ) |
115 | 111, 114 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ) |
116 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈
ℝ+) |
117 | 50, 116 | rerpdivcld 12732 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ) |
118 | 103 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℝ) |
119 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ) |
120 | 118, 119 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℝ) |
121 | 120, 113 | remulcld 10936 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) · (1 / 𝑛)) ∈ ℝ) |
122 | 49, 32 | syldan 590 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
123 | 119, 112 | nndivred 11957 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ) |
124 | 118, 123 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) ∈ ℝ) |
125 | 49, 27 | syldan 590 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℝ+) |
126 | 125 | relogcld 25683 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ) |
127 | 10 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ+) |
128 | 127 | relogcld 25683 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ) |
129 | 49, 31 | syldan 590 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
130 | 129 | absge0d 15084 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛)))) |
131 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) → 𝑛 ≤ (⌊‘𝑥)) |
132 | 131 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ (⌊‘𝑥)) |
133 | 112 | nnzd 12354 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
134 | | flge 13453 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝑥 ↔ 𝑛 ≤ (⌊‘𝑥))) |
135 | 119, 133,
134 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛 ≤ 𝑥 ↔ 𝑛 ≤ (⌊‘𝑥))) |
136 | 132, 135 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ 𝑥) |
137 | 125, 127 | logled 25687 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛 ≤ 𝑥 ↔ (log‘𝑛) ≤ (log‘𝑥))) |
138 | 136, 137 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ≤ (log‘𝑥)) |
139 | 126, 128,
122, 130, 138 | lemul2ad 11845 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥))) |
140 | 50, 122, 116 | ledivmul2d 12755 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))) ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
141 | 139, 140 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛)))) |
142 | 123 | recnd 10934 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ) |
143 | 49, 28 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
144 | 143 | rpne0d 12706 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0) |
145 | 129, 142,
144 | absdivd 15095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛)))) |
146 | 10 | rpge0d 12705 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
147 | 146 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ 𝑥) |
148 | 119, 125,
147 | divge0d 12741 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛)) |
149 | 123, 148 | absidd 15062 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛)) |
150 | 149 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
151 | 145, 150 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
152 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 / 𝑛) → (𝑅‘𝑦) = (𝑅‘(𝑥 / 𝑛))) |
153 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛)) |
154 | 152, 153 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 / 𝑛) → ((𝑅‘𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) |
155 | 154 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅‘𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
156 | 155 | breq1d 5080 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)) |
157 | 44 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+
(abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
158 | 156, 157,
143 | rspcdva 3554 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵) |
159 | 151, 158 | eqbrtrrd 5094 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵) |
160 | 122, 118,
143 | ledivmul2d 12755 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵 ↔ (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛)))) |
161 | 159, 160 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛))) |
162 | 117, 122,
124, 141, 161 | letrd 11062 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝐵 · (𝑥 / 𝑛))) |
163 | 118 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℂ) |
164 | 54 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℂ) |
165 | 112 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℂ) |
166 | 112 | nnne0d 11953 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≠ 0) |
167 | 163, 164,
165, 166 | divassd 11716 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = (𝐵 · (𝑥 / 𝑛))) |
168 | 163, 164 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℂ) |
169 | 168, 165,
166 | divrecd 11684 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = ((𝐵 · 𝑥) · (1 / 𝑛))) |
170 | 167, 169 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) = ((𝐵 · 𝑥) · (1 / 𝑛))) |
171 | 162, 170 | breqtrd 5096 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · (1 / 𝑛))) |
172 | 39, 117, 121, 171 | fsumle 15439 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛))) |
173 | 17 | recnd 10934 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) |
174 | 49, 80 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
175 | 21 | rpne0d 12706 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) |
176 | 39, 173, 174, 175 | fsumdivc 15426 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) |
177 | 103 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℂ) |
178 | 177, 54 | mulcld 10926 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℂ) |
179 | 113 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ) |
180 | 39, 178, 179 | fsummulc2 15424 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛))) |
181 | 172, 176,
180 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))) |
182 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ+) |
183 | 182 | rpge0d 12705 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵) |
184 | 103, 2, 183, 146 | mulge0d 11482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐵 · 𝑥)) |
185 | 26 | nnrecred 11954 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℝ) |
186 | 23, 185 | fsumrecl 15374 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ∈
ℝ) |
187 | 17, 104 | resubcld 11333 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) −
(log‘𝐴)) ∈
ℝ) |
188 | 17, 5 | readdcld 10935 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℝ) |
189 | 67, 185 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → (1 / 𝑛) ∈
ℝ) |
190 | 64, 189 | fsumrecl 15374 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℝ) |
191 | | harmonicubnd 26064 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
192 | 2, 9, 191 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
193 | 10, 73 | relogdivd 25686 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘(𝑥 / 𝐴)) = ((log‘𝑥) − (log‘𝐴))) |
194 | 10, 73 | rpdivcld 12718 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈
ℝ+) |
195 | | harmoniclbnd 26063 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝐴) ∈ ℝ+ →
(log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
197 | 193, 196 | eqbrtrrd 5094 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) −
(log‘𝐴)) ≤
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
198 | 186, 187,
188, 190, 192, 197 | le2subd 11525 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) − Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) ≤ (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴)))) |
199 | 67, 25 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → 𝑛 ∈
ℕ) |
200 | 199 | nnrecred 11954 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → (1 / 𝑛) ∈
ℝ) |
201 | 64, 200 | fsumrecl 15374 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℝ) |
202 | 201 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℂ) |
203 | 114 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ) |
204 | 26 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
205 | 26 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
206 | 204, 205 | reccld 11674 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℂ) |
207 | 79, 47, 23, 206 | fsumsplit 15381 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) = (Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))) |
208 | 202, 203,
207 | mvrladdd 11318 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) − Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) |
209 | | 1cnd 10901 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℂ) |
210 | 104 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝐴) ∈
ℂ) |
211 | 173, 209,
210 | pnncand 11301 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1)
− ((log‘𝑥)
− (log‘𝐴))) =
(1 + (log‘𝐴))) |
212 | 209, 210,
211 | comraddd 11119 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1)
− ((log‘𝑥)
− (log‘𝐴))) =
((log‘𝐴) +
1)) |
213 | 198, 208,
212 | 3brtr3d 5101 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝐴) + 1)) |
214 | 114, 105,
111, 184, 213 | lemul2ad 11845 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ ((𝐵 · 𝑥) · ((log‘𝐴) + 1))) |
215 | 105 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℂ) |
216 | 177, 54, 215 | mulassd 10929 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝐵 · (𝑥 · ((log‘𝐴) + 1)))) |
217 | 177, 54, 215 | mul12d 11114 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · (𝑥 · ((log‘𝐴) + 1))) = (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
218 | 216, 217 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
219 | 214, 218 | breqtrd 5096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
220 | 102, 115,
107, 181, 219 | letrd 11062 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
221 | 102, 107,
20, 110, 220 | lemul2ad 11845 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
(Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) ≤ (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1))))) |
222 | | 2cnd 11981 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℂ) |
223 | 222, 173,
62, 175 | div32d 11704 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)))) |
224 | 210, 209 | addcld 10925 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℂ) |
225 | 177, 224 | mulcld 10926 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈
ℂ) |
226 | 54, 222, 225 | mul12d 11114 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))) = (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1))))) |
227 | 221, 223,
226 | 3brtr4d 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1))))) |
228 | 101 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
(𝐵 ·
((log‘𝐴) + 1)))
∈ ℝ) |
229 | 52, 228, 10 | ledivmuld 12754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))) ↔ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))))) |
230 | 227, 229 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1)))) |
231 | 230 | adantrr 713 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1)))) |
232 | 94, 91, 95, 101, 231 | ello1d 15160 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) ∈ ≤𝑂(1)) |
233 | 90, 91, 92, 232 | lo1add 15264 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) ∈ ≤𝑂(1)) |
234 | 89, 233 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |