Proof of Theorem pntrlog2bndlem6
| Step | Hyp | Ref
| Expression |
| 1 | | elioore 13397 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
| 2 | 1 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) |
| 3 | | 1rp 13017 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 4 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ+) |
| 5 | | 1red 11241 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) |
| 6 | | eliooord 13427 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 8 | 7 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
| 9 | 5, 2, 8 | ltled 11388 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 10 | 2, 4, 9 | rpgecld 13095 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) |
| 11 | | pntrlog2bnd.r |
. . . . . . . . . . . . 13
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 12 | 11 | pntrf 27531 |
. . . . . . . . . . . 12
⊢ 𝑅:ℝ+⟶ℝ |
| 13 | 12 | ffvelcdmi 7078 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
| 14 | 10, 13 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℝ) |
| 15 | 14 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℂ) |
| 16 | 15 | abscld 15460 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(𝑅‘𝑥)) ∈
ℝ) |
| 17 | 10 | relogcld 26589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) |
| 18 | 16, 17 | remulcld 11270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℝ) |
| 19 | | 2re 12319 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ) |
| 21 | 2, 8 | rplogcld 26595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
| 22 | 20, 21 | rerpdivcld 13087 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℝ) |
| 23 | | fzfid 13996 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) |
| 24 | 10 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
| 25 | | elfznn 13575 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 26 | 25 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
| 27 | 26 | nnrpd 13054 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
| 28 | 24, 27 | rpdivcld 13073 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
| 29 | 12 | ffvelcdmi 7078 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 31 | 30 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
| 32 | 31 | abscld 15460 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
| 33 | 27 | relogcld 26589 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℝ) |
| 34 | 32, 33 | remulcld 11270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 35 | 23, 34 | fsumrecl 15755 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 36 | 22, 35 | remulcld 11270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
| 37 | 18, 36 | resubcld 11670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ) |
| 38 | 37 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ) |
| 39 | | fzfid 13996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ∈ Fin) |
| 40 | | ssun2 4159 |
. . . . . . . . . . 11
⊢
(((⌊‘(𝑥
/ 𝐴)) +
1)...(⌊‘𝑥))
⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) |
| 41 | | pntsval.1 |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈
(1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
| 42 | | pntrlog2bnd.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
| 43 | | pntrlog2bndlem5.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 44 | | pntrlog2bndlem5.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ ℝ+
(abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
| 45 | | pntrlog2bndlem6.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 46 | | pntrlog2bndlem6.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝐴) |
| 47 | 41, 11, 42, 43, 44, 45, 46 | pntrlog2bndlem6a 27550 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥)) =
((1...(⌊‘(𝑥 /
𝐴))) ∪
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| 48 | 40, 47 | sseqtrrid 4007 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆
(1...(⌊‘𝑥))) |
| 49 | 48 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥))) |
| 50 | 49, 34 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 51 | 39, 50 | fsumrecl 15755 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 52 | 22, 51 | remulcld 11270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
| 53 | 52 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 54 | 2 | recnd 11268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) |
| 55 | 10 | rpne0d 13061 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) |
| 56 | 38, 53, 54, 55 | divdird 12060 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) |
| 57 | 18 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘(𝑅‘𝑥)) · (log‘𝑥)) ∈
ℂ) |
| 58 | 36 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 59 | 57, 58, 53 | subsubd 11627 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 60 | 22 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℂ) |
| 61 | 35 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 62 | 51 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 63 | 60, 61, 62 | subdid 11698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 64 | | fzfid 13996 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘(𝑥 /
𝐴))) ∈
Fin) |
| 65 | | ssun1 4158 |
. . . . . . . . . . . . . . 15
⊢
(1...(⌊‘(𝑥 / 𝐴))) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) |
| 66 | 65, 47 | sseqtrrid 4007 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘(𝑥 /
𝐴))) ⊆
(1...(⌊‘𝑥))) |
| 67 | 66 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → 𝑛 ∈
(1...(⌊‘𝑥))) |
| 68 | 67, 34 | syldan 591 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) →
((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 69 | 64, 68 | fsumrecl 15755 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 70 | 69 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 71 | 3 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈
ℝ+) |
| 72 | 45, 71, 46 | rpgecld 13095 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ+) |
| 74 | 2, 73 | rerpdivcld 13087 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
| 75 | | reflcl 13818 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 / 𝐴) ∈ ℝ →
(⌊‘(𝑥 / 𝐴)) ∈
ℝ) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘(𝑥 / 𝐴)) ∈
ℝ) |
| 77 | 76 | ltp1d 12177 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1)) |
| 78 | | fzdisj 13573 |
. . . . . . . . . . . 12
⊢
((⌊‘(𝑥 /
𝐴)) <
((⌊‘(𝑥 / 𝐴)) + 1) →
((1...(⌊‘(𝑥 /
𝐴))) ∩
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((1...(⌊‘(𝑥 /
𝐴))) ∩
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅) |
| 80 | 34 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 81 | 79, 47, 23, 80 | fsumsplit 15762 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 82 | 70, 62, 81 | mvrraddd 11654 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
| 83 | 82 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 84 | 63, 83 | eqtr3d 2773 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 85 | 84 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 86 | 59, 85 | eqtr3d 2773 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 87 | 86 | oveq1d 7425 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
| 88 | 56, 87 | eqtr3d 2773 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) = ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) |
| 89 | 88 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))) |
| 90 | 37, 10 | rerpdivcld 13087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ) |
| 91 | 52, 10 | rerpdivcld 13087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ∈ ℝ) |
| 92 | 41, 11, 42, 43, 44 | pntrlog2bndlem5 27549 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |
| 93 | | ioossre 13429 |
. . . . 5
⊢
(1(,)+∞) ⊆ ℝ |
| 94 | 93 | a1i 11 |
. . . 4
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ) |
| 95 | | 1red 11241 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
| 96 | 19 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ) |
| 97 | 43 | rpred 13056 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 98 | 72 | relogcld 26589 |
. . . . . . 7
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
| 99 | 98, 95 | readdcld 11269 |
. . . . . 6
⊢ (𝜑 → ((log‘𝐴) + 1) ∈
ℝ) |
| 100 | 97, 99 | remulcld 11270 |
. . . . 5
⊢ (𝜑 → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ) |
| 101 | 96, 100 | remulcld 11270 |
. . . 4
⊢ (𝜑 → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈
ℝ) |
| 102 | 51, 21 | rerpdivcld 13087 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ) |
| 103 | 97 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ) |
| 104 | 73 | relogcld 26589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝐴) ∈
ℝ) |
| 105 | 104, 5 | readdcld 11269 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℝ) |
| 106 | 103, 105 | remulcld 11270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈
ℝ) |
| 107 | 2, 106 | remulcld 11270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ) |
| 108 | | 2rp 13018 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
| 109 | 108 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ+) |
| 110 | 109 | rpge0d 13060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
2) |
| 111 | 103, 2 | remulcld 11270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℝ) |
| 112 | 49, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
| 113 | 112 | nnrecred 12296 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ) |
| 114 | 39, 113 | fsumrecl 15755 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ) |
| 115 | 111, 114 | remulcld 11270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ) |
| 116 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈
ℝ+) |
| 117 | 50, 116 | rerpdivcld 13087 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ) |
| 118 | 103 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℝ) |
| 119 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ) |
| 120 | 118, 119 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℝ) |
| 121 | 120, 113 | remulcld 11270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) · (1 / 𝑛)) ∈ ℝ) |
| 122 | 49, 32 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
| 123 | 119, 112 | nndivred 12299 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ) |
| 124 | 118, 123 | remulcld 11270 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) ∈ ℝ) |
| 125 | 49, 27 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℝ+) |
| 126 | 125 | relogcld 26589 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ) |
| 127 | 10 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ+) |
| 128 | 127 | relogcld 26589 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ) |
| 129 | 49, 31 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
| 130 | 129 | absge0d 15468 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛)))) |
| 131 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) → 𝑛 ≤ (⌊‘𝑥)) |
| 132 | 131 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ (⌊‘𝑥)) |
| 133 | 112 | nnzd 12620 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
| 134 | | flge 13827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝑥 ↔ 𝑛 ≤ (⌊‘𝑥))) |
| 135 | 119, 133,
134 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛 ≤ 𝑥 ↔ 𝑛 ≤ (⌊‘𝑥))) |
| 136 | 132, 135 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ 𝑥) |
| 137 | 125, 127 | logled 26593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛 ≤ 𝑥 ↔ (log‘𝑛) ≤ (log‘𝑥))) |
| 138 | 136, 137 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ≤ (log‘𝑥)) |
| 139 | 126, 128,
122, 130, 138 | lemul2ad 12187 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥))) |
| 140 | 50, 122, 116 | ledivmul2d 13110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))) ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
| 141 | 139, 140 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛)))) |
| 142 | 123 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ) |
| 143 | 49, 28 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 144 | 143 | rpne0d 13061 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0) |
| 145 | 129, 142,
144 | absdivd 15479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛)))) |
| 146 | 10 | rpge0d 13060 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
| 147 | 146 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ 𝑥) |
| 148 | 119, 125,
147 | divge0d 13096 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛)) |
| 149 | 123, 148 | absidd 15446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛)) |
| 150 | 149 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
| 151 | 145, 150 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛))) |
| 152 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 / 𝑛) → (𝑅‘𝑦) = (𝑅‘(𝑥 / 𝑛))) |
| 153 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛)) |
| 154 | 152, 153 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 / 𝑛) → ((𝑅‘𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) |
| 155 | 154 | fveq2d 6885 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅‘𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
| 156 | 155 | breq1d 5134 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)) |
| 157 | 44 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+
(abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
| 158 | 156, 157,
143 | rspcdva 3607 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵) |
| 159 | 151, 158 | eqbrtrrd 5148 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵) |
| 160 | 122, 118,
143 | ledivmul2d 13110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵 ↔ (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛)))) |
| 161 | 159, 160 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛))) |
| 162 | 117, 122,
124, 141, 161 | letrd 11397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝐵 · (𝑥 / 𝑛))) |
| 163 | 118 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℂ) |
| 164 | 54 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℂ) |
| 165 | 112 | nncnd 12261 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℂ) |
| 166 | 112 | nnne0d 12295 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≠ 0) |
| 167 | 163, 164,
165, 166 | divassd 12057 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = (𝐵 · (𝑥 / 𝑛))) |
| 168 | 163, 164 | mulcld 11260 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℂ) |
| 169 | 168, 165,
166 | divrecd 12025 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = ((𝐵 · 𝑥) · (1 / 𝑛))) |
| 170 | 167, 169 | eqtr3d 2773 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) = ((𝐵 · 𝑥) · (1 / 𝑛))) |
| 171 | 162, 170 | breqtrd 5150 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · (1 / 𝑛))) |
| 172 | 39, 117, 121, 171 | fsumle 15820 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛))) |
| 173 | 17 | recnd 11268 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) |
| 174 | 49, 80 | syldan 591 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 175 | 21 | rpne0d 13061 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) |
| 176 | 39, 173, 174, 175 | fsumdivc 15807 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) |
| 177 | 103 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℂ) |
| 178 | 177, 54 | mulcld 11260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℂ) |
| 179 | 113 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ) |
| 180 | 39, 178, 179 | fsummulc2 15805 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛))) |
| 181 | 172, 176,
180 | 3brtr4d 5156 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))) |
| 182 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐵 ∈
ℝ+) |
| 183 | 182 | rpge0d 13060 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵) |
| 184 | 103, 2, 183, 146 | mulge0d 11819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐵 · 𝑥)) |
| 185 | 26 | nnrecred 12296 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℝ) |
| 186 | 23, 185 | fsumrecl 15755 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ∈
ℝ) |
| 187 | 17, 104 | resubcld 11670 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) −
(log‘𝐴)) ∈
ℝ) |
| 188 | 17, 5 | readdcld 11269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℝ) |
| 189 | 67, 185 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → (1 / 𝑛) ∈
ℝ) |
| 190 | 64, 189 | fsumrecl 15755 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℝ) |
| 191 | | harmonicubnd 26977 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
| 192 | 2, 9, 191 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
| 193 | 10, 73 | relogdivd 26592 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘(𝑥 / 𝐴)) = ((log‘𝑥) − (log‘𝐴))) |
| 194 | 10, 73 | rpdivcld 13073 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈
ℝ+) |
| 195 | | harmoniclbnd 26976 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝐴) ∈ ℝ+ →
(log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
| 196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
| 197 | 193, 196 | eqbrtrrd 5148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) −
(log‘𝐴)) ≤
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) |
| 198 | 186, 187,
188, 190, 192, 197 | le2subd 11862 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) − Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) ≤ (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴)))) |
| 199 | 67, 25 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → 𝑛 ∈
ℕ) |
| 200 | 199 | nnrecred 12296 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))) → (1 / 𝑛) ∈
ℝ) |
| 201 | 64, 200 | fsumrecl 15755 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℝ) |
| 202 | 201 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) ∈ ℂ) |
| 203 | 114 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ) |
| 204 | 26 | nncnd 12261 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
| 205 | 26 | nnne0d 12295 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
| 206 | 204, 205 | reccld 12015 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℂ) |
| 207 | 79, 47, 23, 206 | fsumsplit 15762 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) = (Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))) |
| 208 | 202, 203,
207 | mvrladdd 11655 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) − Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) |
| 209 | | 1cnd 11235 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℂ) |
| 210 | 104 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝐴) ∈
ℂ) |
| 211 | 173, 209,
210 | pnncand 11638 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1)
− ((log‘𝑥)
− (log‘𝐴))) =
(1 + (log‘𝐴))) |
| 212 | 209, 210,
211 | comraddd 11454 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1)
− ((log‘𝑥)
− (log‘𝐴))) =
((log‘𝐴) +
1)) |
| 213 | 198, 208,
212 | 3brtr3d 5155 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝐴) + 1)) |
| 214 | 114, 105,
111, 184, 213 | lemul2ad 12187 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ ((𝐵 · 𝑥) · ((log‘𝐴) + 1))) |
| 215 | 105 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℂ) |
| 216 | 177, 54, 215 | mulassd 11263 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝐵 · (𝑥 · ((log‘𝐴) + 1)))) |
| 217 | 177, 54, 215 | mul12d 11449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · (𝑥 · ((log‘𝐴) + 1))) = (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
| 218 | 216, 217 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
| 219 | 214, 218 | breqtrd 5150 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
| 220 | 102, 115,
107, 181, 219 | letrd 11397 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1)))) |
| 221 | 102, 107,
20, 110, 220 | lemul2ad 12187 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
(Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) ≤ (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1))))) |
| 222 | | 2cnd 12323 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℂ) |
| 223 | 222, 173,
62, 175 | div32d 12045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)))) |
| 224 | 210, 209 | addcld 11259 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝐴) + 1) ∈
ℂ) |
| 225 | 177, 224 | mulcld 11260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈
ℂ) |
| 226 | 54, 222, 225 | mul12d 11449 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))) = (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1))))) |
| 227 | 221, 223,
226 | 3brtr4d 5156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1))))) |
| 228 | 101 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
(𝐵 ·
((log‘𝐴) + 1)))
∈ ℝ) |
| 229 | 52, 228, 10 | ledivmuld 13109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))) ↔ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))))) |
| 230 | 227, 229 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1)))) |
| 231 | 230 | adantrr 717 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1)))) |
| 232 | 94, 91, 95, 101, 231 | ello1d 15544 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) ∈ ≤𝑂(1)) |
| 233 | 90, 91, 92, 232 | lo1add 15648 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) ∈ ≤𝑂(1)) |
| 234 | 89, 233 | eqeltrrd 2836 |
1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) |