MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6 26636
Description: Lemma for pntrlog2bnd 26637. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦   𝑇,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 13038 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 12663 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 10907 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13067 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11053 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 12740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bnd.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 26616 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1312ffvelrni 6942 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1410, 13syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1514recnd 10934 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1615abscld 15076 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1710relogcld 25683 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 10936 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
19 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
2019a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
212, 8rplogcld 25689 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2220, 21rerpdivcld 12732 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
23 fzfid 13621 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2410adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
25 elfznn 13214 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2625adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2726nnrpd 12699 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2824, 27rpdivcld 12718 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2912ffvelrni 6942 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3130recnd 10934 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3231abscld 15076 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3327relogcld 25683 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
3432, 33remulcld 10936 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3523, 34fsumrecl 15374 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3622, 35remulcld 10936 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3718, 36resubcld 11333 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
3837recnd 10934 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
39 fzfid 13621 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ∈ Fin)
40 ssun2 4103 . . . . . . . . . . 11 (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
41 pntsval.1 . . . . . . . . . . . 12 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
42 pntrlog2bnd.t . . . . . . . . . . . 12 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝐴)
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 26635 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
4840, 47sseqtrrid 3970 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
4948sselda 3917 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
5049, 34syldan 590 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5139, 50fsumrecl 15374 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
5222, 51remulcld 10936 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
5352recnd 10934 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
542recnd 10934 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
5510rpne0d 12706 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
5638, 53, 54, 55divdird 11719 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)))
5718recnd 10934 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
5836recnd 10934 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
5957, 58, 53subsubd 11290 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
6022recnd 10934 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
6135recnd 10934 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6251recnd 10934 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6360, 61, 62subdid 11361 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
64 fzfid 13621 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
65 ssun1 4102 . . . . . . . . . . . . . . 15 (1...(⌊‘(𝑥 / 𝐴))) ⊆ ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))
6665, 47sseqtrrid 3970 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ⊆ (1...(⌊‘𝑥)))
6766sselda 3917 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ (1...(⌊‘𝑥)))
6867, 34syldan 590 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
6964, 68fsumrecl 15374 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7069recnd 10934 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
713a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ+)
7245, 71, 46rpgecld 12740 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
742, 73rerpdivcld 12732 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
75 reflcl 13444 . . . . . . . . . . . . . 14 ((𝑥 / 𝐴) ∈ ℝ → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) ∈ ℝ)
7776ltp1d 11835 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1))
78 fzdisj 13212 . . . . . . . . . . . 12 ((⌊‘(𝑥 / 𝐴)) < ((⌊‘(𝑥 / 𝐴)) + 1) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
7977, 78syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((1...(⌊‘(𝑥 / 𝐴))) ∩ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) = ∅)
8034recnd 10934 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
8179, 47, 23, 80fsumsplit 15381 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8270, 62, 81mvrraddd 11317 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
8382oveq2d 7271 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8463, 83eqtr3d 2780 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
8584oveq2d 7271 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8659, 85eqtr3d 2780 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
8786oveq1d 7270 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8856, 87eqtr3d 2780 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
8988mpteq2dva 5170 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)))
9037, 10rerpdivcld 12732 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
9152, 10rerpdivcld 12732 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ∈ ℝ)
9241, 11, 42, 43, 44pntrlog2bndlem5 26634 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
93 ioossre 13069 . . . . 5 (1(,)+∞) ⊆ ℝ
9493a1i 11 . . . 4 (𝜑 → (1(,)+∞) ⊆ ℝ)
95 1red 10907 . . . 4 (𝜑 → 1 ∈ ℝ)
9619a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
9743rpred 12701 . . . . . 6 (𝜑𝐵 ∈ ℝ)
9872relogcld 25683 . . . . . . 7 (𝜑 → (log‘𝐴) ∈ ℝ)
9998, 95readdcld 10935 . . . . . 6 (𝜑 → ((log‘𝐴) + 1) ∈ ℝ)
10097, 99remulcld 10936 . . . . 5 (𝜑 → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
10196, 100remulcld 10936 . . . 4 (𝜑 → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
10251, 21rerpdivcld 12732 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
10397adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ)
10473relogcld 25683 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℝ)
105104, 5readdcld 10935 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℝ)
106103, 105remulcld 10936 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℝ)
1072, 106remulcld 10936 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
108 2rp 12664 . . . . . . . . . 10 2 ∈ ℝ+
109108a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
110109rpge0d 12705 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
111103, 2remulcld 10936 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℝ)
11249, 25syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113112nnrecred 11954 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
11439, 113fsumrecl 15374 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
115111, 114remulcld 10936 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
11621adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ+)
11750, 116rerpdivcld 12732 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
118103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℝ)
1192adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
120118, 119remulcld 10936 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℝ)
121120, 113remulcld 10936 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) · (1 / 𝑛)) ∈ ℝ)
12249, 32syldan 590 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
123119, 112nndivred 11957 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
124118, 123remulcld 10936 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) ∈ ℝ)
12549, 27syldan 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
126125relogcld 25683 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
12710adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
128127relogcld 25683 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑥) ∈ ℝ)
12949, 31syldan 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
130129absge0d 15084 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
131 elfzle2 13189 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)) → 𝑛 ≤ (⌊‘𝑥))
132131adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≤ (⌊‘𝑥))
133112nnzd 12354 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
134 flge 13453 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
135119, 133, 134syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥𝑛 ≤ (⌊‘𝑥)))
136132, 135mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛𝑥)
137125, 127logled 25687 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑛𝑥 ↔ (log‘𝑛) ≤ (log‘𝑥)))
138136, 137mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (log‘𝑛) ≤ (log‘𝑥))
139126, 128, 122, 130, 138lemul2ad 11845 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥)))
14050, 122, 116ledivmul2d 12755 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))) ↔ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑥))))
141139, 140mpbird 256 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
142123recnd 10934 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
14349, 28syldan 590 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
144143rpne0d 12706 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
145129, 142, 144absdivd 15095 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))))
14610rpge0d 12705 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
147146adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ 𝑥)
148119, 125, 147divge0d 12741 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
149123, 148absidd 15062 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
150149oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
151145, 150eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)))
152 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → (𝑅𝑦) = (𝑅‘(𝑥 / 𝑛)))
153 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
154152, 153oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → ((𝑅𝑦) / 𝑦) = ((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))
155154fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
156155breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵 ↔ (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵))
15744ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
158156, 157, 143rspcdva 3554 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) ≤ 𝐵)
159151, 158eqbrtrrd 5094 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵)
160122, 118, 143ledivmul2d 12755 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) / (𝑥 / 𝑛)) ≤ 𝐵 ↔ (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛))))
161159, 160mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ≤ (𝐵 · (𝑥 / 𝑛)))
162117, 122, 124, 141, 161letrd 11062 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝐵 · (𝑥 / 𝑛)))
163118recnd 10934 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝐵 ∈ ℂ)
16454adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
165112nncnd 11919 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
166112nnne0d 11953 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → 𝑛 ≠ 0)
167163, 164, 165, 166divassd 11716 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = (𝐵 · (𝑥 / 𝑛)))
168163, 164mulcld 10926 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · 𝑥) ∈ ℂ)
169168, 165, 166divrecd 11684 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((𝐵 · 𝑥) / 𝑛) = ((𝐵 · 𝑥) · (1 / 𝑛)))
170167, 169eqtr3d 2780 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (𝐵 · (𝑥 / 𝑛)) = ((𝐵 · 𝑥) · (1 / 𝑛)))
171162, 170breqtrd 5096 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · (1 / 𝑛)))
17239, 117, 121, 171fsumle 15439 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
17317recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
17449, 80syldan 590 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
17521rpne0d 12706 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
17639, 173, 174, 175fsumdivc 15426 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)))
177103recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℂ)
178177, 54mulcld 10926 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · 𝑥) ∈ ℂ)
179113recnd 10934 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
18039, 178, 179fsummulc2 15424 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((𝐵 · 𝑥) · (1 / 𝑛)))
181172, 176, 1803brtr4d 5102 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
18243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐵 ∈ ℝ+)
183182rpge0d 12705 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐵)
184103, 2, 183, 146mulge0d 11482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐵 · 𝑥))
18526nnrecred 11954 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
18623, 185fsumrecl 15374 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
18717, 104resubcld 11333 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ∈ ℝ)
18817, 5readdcld 10935 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
18967, 185syldan 590 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
19064, 189fsumrecl 15374 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
191 harmonicubnd 26064 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1922, 9, 191syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
19310, 73relogdivd 25686 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) = ((log‘𝑥) − (log‘𝐴)))
19410, 73rpdivcld 12718 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
195 harmoniclbnd 26063 . . . . . . . . . . . . . . 15 ((𝑥 / 𝐴) ∈ ℝ+ → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘(𝑥 / 𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
197193, 196eqbrtrrd 5094 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) − (log‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛))
198186, 187, 188, 190, 192, 197le2subd 11525 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) ≤ (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))))
19967, 25syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
200199nnrecred 11954 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (1 / 𝑛) ∈ ℝ)
20164, 200fsumrecl 15374 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℝ)
202201recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) ∈ ℂ)
203114recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ)
20426nncnd 11919 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
20526nnne0d 11953 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
206204, 205reccld 11674 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
20779, 47, 23, 206fsumsplit 15381 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)))
208202, 203, 207mvrladdd 11318 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛))
209 1cnd 10901 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
210104recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝐴) ∈ ℂ)
211173, 209, 210pnncand 11301 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = (1 + (log‘𝐴)))
212209, 210, 211comraddd 11119 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) − ((log‘𝑥) − (log‘𝐴))) = ((log‘𝐴) + 1))
213198, 208, 2123brtr3d 5101 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝐴) + 1))
214114, 105, 111, 184, 213lemul2ad 11845 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ ((𝐵 · 𝑥) · ((log‘𝐴) + 1)))
215105recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
216177, 54, 215mulassd 10929 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝐵 · (𝑥 · ((log‘𝐴) + 1))))
217177, 54, 215mul12d 11114 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · (𝑥 · ((log‘𝐴) + 1))) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
218216, 217eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · ((log‘𝐴) + 1)) = (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
219214, 218breqtrd 5096 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐵 · 𝑥) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))(1 / 𝑛)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
220102, 115, 107, 181, 219letrd 11062 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥)) ≤ (𝑥 · (𝐵 · ((log‘𝐴) + 1))))
221102, 107, 20, 110, 220lemul2ad 11845 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))) ≤ (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
222 2cnd 11981 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
223222, 173, 62, 175div32d 11704 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) / (log‘𝑥))))
224210, 209addcld 10925 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝐴) + 1) ∈ ℂ)
225177, 224mulcld 10926 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐵 · ((log‘𝐴) + 1)) ∈ ℂ)
22654, 222, 225mul12d 11114 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))) = (2 · (𝑥 · (𝐵 · ((log‘𝐴) + 1)))))
227221, 223, 2263brtr4d 5102 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1)))))
228101adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · (𝐵 · ((log‘𝐴) + 1))) ∈ ℝ)
22952, 228, 10ledivmuld 12754 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))) ↔ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ≤ (𝑥 · (2 · (𝐵 · ((log‘𝐴) + 1))))))
230227, 229mpbird 256 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
231230adantrr 713 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥) ≤ (2 · (𝐵 · ((log‘𝐴) + 1))))
23294, 91, 95, 101, 231ello1d 15160 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥)) ∈ ≤𝑂(1))
23390, 91, 92, 232lo1add 15264 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) / 𝑥))) ∈ ≤𝑂(1))
23489, 233eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cz 12249  +crp 12659  (,)cioo 13008  ...cfz 13168  cfl 13438  abscabs 14873  ≤𝑂(1)clo1 15124  Σcsu 15325  logclog 25615  Λcvma 26146  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154  df-mu 26155
This theorem is referenced by:  pntrlog2bnd  26637
  Copyright terms: Public domain W3C validator