MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo1d Structured version   Visualization version   GIF version

Theorem elo1d 14608
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
elo1mpt.1 (𝜑𝐴 ⊆ ℝ)
elo1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
elo1d.3 (𝜑𝐶 ∈ ℝ)
elo1d.4 (𝜑𝑀 ∈ ℝ)
elo1d.5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (abs‘𝐵) ≤ 𝑀)
Assertion
Ref Expression
elo1d (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑀
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elo1d
StepHypRef Expression
1 elo1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 elo1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
32abscld 14516 . . 3 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4 elo1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
5 elo1d.4 . . 3 (𝜑𝑀 ∈ ℝ)
6 elo1d.5 . . 3 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (abs‘𝐵) ≤ 𝑀)
71, 3, 4, 5, 6ello1d 14595 . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))
82lo1o12 14605 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
97, 8mpbird 249 1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  wss 3769   class class class wbr 4843  cmpt 4922  cfv 6101  cc 10222  cr 10223  cle 10364  abscabs 14315  𝑂(1)co1 14558  ≤𝑂(1)clo1 14559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-ico 12430  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-o1 14562  df-lo1 14563
This theorem is referenced by:  o1fsum  14883  flo1  14924  divsqrtsumo1  25062  chebbnd1  25513  chto1ub  25517  rpvmasumlem  25528  dchrmusum2  25535  dchrisum0lem2a  25558  dchrisum0lem2  25559  rplogsum  25568  mudivsum  25571  mulogsumlem  25572  selberg3lem1  25598  pntrsumo1  25606
  Copyright terms: Public domain W3C validator