MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icco1 Structured version   Visualization version   GIF version

Theorem icco1 15447
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
icco1.1 (𝜑𝐴 ⊆ ℝ)
icco1.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
icco1.3 (𝜑𝐶 ∈ ℝ)
icco1.4 (𝜑𝑀 ∈ ℝ)
icco1.5 (𝜑𝑁 ∈ ℝ)
icco1.6 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ (𝑀[,]𝑁))
Assertion
Ref Expression
icco1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem icco1
StepHypRef Expression
1 icco1.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 icco1.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 icco1.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 icco1.5 . . 3 (𝜑𝑁 ∈ ℝ)
5 icco1.6 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ (𝑀[,]𝑁))
6 icco1.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
7 elicc2 13314 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
86, 4, 7syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
105, 9mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁))
1110simp3d 1144 . . 3 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑁)
121, 2, 3, 4, 11ello1d 15430 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
132renegcld 11547 . . 3 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
146renegcld 11547 . . 3 (𝜑 → -𝑀 ∈ ℝ)
1510simp2d 1143 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝑀𝐵)
166adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝑀 ∈ ℝ)
172adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ ℝ)
1816, 17lenegd 11699 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝑀𝐵 ↔ -𝐵 ≤ -𝑀))
1915, 18mpbid 232 . . 3 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → -𝐵 ≤ -𝑀)
201, 13, 3, 14, 19ello1d 15430 . 2 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))
212o1lo1 15444 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
2212, 20, 21mpbir2and 713 1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3903   class class class wbr 5092  cmpt 5173  (class class class)co 7349  cr 11008  cle 11150  -cneg 11348  [,]cicc 13251  𝑂(1)co1 15393  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-o1 15397  df-lo1 15398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator