![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icco1 | Structured version Visualization version GIF version |
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.) |
Ref | Expression |
---|---|
icco1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
icco1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
icco1.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
icco1.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
icco1.5 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
icco1.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) |
Ref | Expression |
---|---|
icco1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icco1.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | icco1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | icco1.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | icco1.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
5 | icco1.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) | |
6 | icco1.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
7 | elicc2 12554 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) | |
8 | 6, 4, 7 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
9 | 8 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
10 | 5, 9 | mpbid 224 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁)) |
11 | 10 | simp3d 1135 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑁) |
12 | 1, 2, 3, 4, 11 | ello1d 14666 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
13 | 2 | renegcld 10804 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
14 | 6 | renegcld 10804 | . . 3 ⊢ (𝜑 → -𝑀 ∈ ℝ) |
15 | 10 | simp2d 1134 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ≤ 𝐵) |
16 | 6 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ∈ ℝ) |
17 | 2 | adantrr 707 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
18 | 16, 17 | lenegd 10956 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝑀 ≤ 𝐵 ↔ -𝐵 ≤ -𝑀)) |
19 | 15, 18 | mpbid 224 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → -𝐵 ≤ -𝑀) |
20 | 1, 13, 3, 14, 19 | ello1d 14666 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) |
21 | 2 | o1lo1 14680 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) |
22 | 12, 20, 21 | mpbir2and 703 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 ⊆ wss 3792 class class class wbr 4888 ↦ cmpt 4967 (class class class)co 6924 ℝcr 10273 ≤ cle 10414 -cneg 10609 [,]cicc 12494 𝑂(1)co1 14629 ≤𝑂(1)clo1 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-ico 12497 df-icc 12498 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-o1 14633 df-lo1 14634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |