![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icco1 | Structured version Visualization version GIF version |
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.) |
Ref | Expression |
---|---|
icco1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
icco1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
icco1.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
icco1.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
icco1.5 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
icco1.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) |
Ref | Expression |
---|---|
icco1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icco1.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | icco1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | icco1.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | icco1.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
5 | icco1.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) | |
6 | icco1.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
7 | elicc2 13388 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) | |
8 | 6, 4, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
10 | 5, 9 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁)) |
11 | 10 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑁) |
12 | 1, 2, 3, 4, 11 | ello1d 15466 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
13 | 2 | renegcld 11640 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
14 | 6 | renegcld 11640 | . . 3 ⊢ (𝜑 → -𝑀 ∈ ℝ) |
15 | 10 | simp2d 1143 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ≤ 𝐵) |
16 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ∈ ℝ) |
17 | 2 | adantrr 715 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
18 | 16, 17 | lenegd 11792 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝑀 ≤ 𝐵 ↔ -𝐵 ≤ -𝑀)) |
19 | 15, 18 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → -𝐵 ≤ -𝑀) |
20 | 1, 13, 3, 14, 19 | ello1d 15466 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) |
21 | 2 | o1lo1 15480 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) |
22 | 12, 20, 21 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 (class class class)co 7408 ℝcr 11108 ≤ cle 11248 -cneg 11444 [,]cicc 13326 𝑂(1)co1 15429 ≤𝑂(1)clo1 15430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-ico 13329 df-icc 13330 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-o1 15433 df-lo1 15434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |