Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icco1 | Structured version Visualization version GIF version |
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.) |
Ref | Expression |
---|---|
icco1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
icco1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
icco1.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
icco1.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
icco1.5 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
icco1.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) |
Ref | Expression |
---|---|
icco1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icco1.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | icco1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | icco1.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | icco1.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
5 | icco1.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) | |
6 | icco1.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
7 | elicc2 13143 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) | |
8 | 6, 4, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁))) |
10 | 5, 9 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁)) |
11 | 10 | simp3d 1143 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑁) |
12 | 1, 2, 3, 4, 11 | ello1d 15230 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
13 | 2 | renegcld 11402 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
14 | 6 | renegcld 11402 | . . 3 ⊢ (𝜑 → -𝑀 ∈ ℝ) |
15 | 10 | simp2d 1142 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ≤ 𝐵) |
16 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝑀 ∈ ℝ) |
17 | 2 | adantrr 714 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
18 | 16, 17 | lenegd 11554 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (𝑀 ≤ 𝐵 ↔ -𝐵 ≤ -𝑀)) |
19 | 15, 18 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → -𝐵 ≤ -𝑀) |
20 | 1, 13, 3, 14, 19 | ello1d 15230 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) |
21 | 2 | o1lo1 15244 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) |
22 | 12, 20, 21 | mpbir2and 710 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ↦ cmpt 5162 (class class class)co 7271 ℝcr 10871 ≤ cle 11011 -cneg 11206 [,]cicc 13081 𝑂(1)co1 15193 ≤𝑂(1)clo1 15194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-ico 13084 df-icc 13085 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-o1 15197 df-lo1 15198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |