| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8916 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9861 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 dom cdm 5623 Oncon0 6311 ≈ cen 8876 cardccrd 9850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 df-card 9854 |
| This theorem is referenced by: oncardval 9870 oncardid 9871 cardnn 9878 iscard 9890 carduni 9896 nnsdomel 9905 harsdom 9910 harsucnn 9913 pm54.43lem 9915 infxpenlem 9926 infxpidm2 9930 onssnum 9953 alephnbtwn 9984 alephnbtwn2 9985 alephordilem1 9986 alephord2 9989 alephsdom 9999 cardaleph 10002 infenaleph 10004 alephinit 10008 iunfictbso 10027 ficardun2 10115 pwsdompw 10116 infunsdom1 10125 ackbij2 10155 cfflb 10172 sdom2en01 10215 fin23lem22 10240 iunctb 10487 alephadd 10490 alephmul 10491 alephexp1 10492 alephsuc3 10493 canthp1lem2 10566 pwfseqlem4a 10574 pwfseqlem4 10575 pwfseqlem5 10576 gchaleph 10584 gchaleph2 10585 hargch 10586 cygctb 19789 ttac 43012 numinfctb 43079 isnumbasgrplem2 43080 isnumbasabl 43082 iscard4 43509 minregex2 43511 harval3 43514 harval3on 43515 aleph1min 43533 |
| Copyright terms: Public domain | W3C validator |