| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8998 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9960 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ≈ cen 8956 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 df-card 9953 |
| This theorem is referenced by: oncardval 9969 oncardid 9970 cardnn 9977 iscard 9989 carduni 9995 nnsdomel 10004 harsdom 10009 harsucnn 10012 pm54.43lem 10014 infxpenlem 10027 infxpidm2 10031 onssnum 10054 alephnbtwn 10085 alephnbtwn2 10086 alephordilem1 10087 alephord2 10090 alephsdom 10100 cardaleph 10103 infenaleph 10105 alephinit 10109 iunfictbso 10128 ficardun2 10216 pwsdompw 10217 infunsdom1 10226 ackbij2 10256 cfflb 10273 sdom2en01 10316 fin23lem22 10341 iunctb 10588 alephadd 10591 alephmul 10592 alephexp1 10593 alephsuc3 10594 canthp1lem2 10667 pwfseqlem4a 10675 pwfseqlem4 10676 pwfseqlem5 10677 gchaleph 10685 gchaleph2 10686 hargch 10687 cygctb 19873 ttac 43060 numinfctb 43127 isnumbasgrplem2 43128 isnumbasabl 43130 iscard4 43557 minregex2 43559 harval3 43562 harval3on 43563 aleph1min 43581 |
| Copyright terms: Public domain | W3C validator |