| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8955 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9899 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 dom cdm 5638 Oncon0 6332 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 df-card 9892 |
| This theorem is referenced by: oncardval 9908 oncardid 9909 cardnn 9916 iscard 9928 carduni 9934 nnsdomel 9943 harsdom 9948 harsucnn 9951 pm54.43lem 9953 infxpenlem 9966 infxpidm2 9970 onssnum 9993 alephnbtwn 10024 alephnbtwn2 10025 alephordilem1 10026 alephord2 10029 alephsdom 10039 cardaleph 10042 infenaleph 10044 alephinit 10048 iunfictbso 10067 ficardun2 10155 pwsdompw 10156 infunsdom1 10165 ackbij2 10195 cfflb 10212 sdom2en01 10255 fin23lem22 10280 iunctb 10527 alephadd 10530 alephmul 10531 alephexp1 10532 alephsuc3 10533 canthp1lem2 10606 pwfseqlem4a 10614 pwfseqlem4 10615 pwfseqlem5 10616 gchaleph 10624 gchaleph2 10625 hargch 10626 cygctb 19822 ttac 43025 numinfctb 43092 isnumbasgrplem2 43093 isnumbasabl 43095 iscard4 43522 minregex2 43524 harval3 43527 harval3on 43528 aleph1min 43546 |
| Copyright terms: Public domain | W3C validator |