| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8958 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9906 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Oncon0 6335 ≈ cen 8918 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 df-card 9899 |
| This theorem is referenced by: oncardval 9915 oncardid 9916 cardnn 9923 iscard 9935 carduni 9941 nnsdomel 9950 harsdom 9955 harsucnn 9958 pm54.43lem 9960 infxpenlem 9973 infxpidm2 9977 onssnum 10000 alephnbtwn 10031 alephnbtwn2 10032 alephordilem1 10033 alephord2 10036 alephsdom 10046 cardaleph 10049 infenaleph 10051 alephinit 10055 iunfictbso 10074 ficardun2 10162 pwsdompw 10163 infunsdom1 10172 ackbij2 10202 cfflb 10219 sdom2en01 10262 fin23lem22 10287 iunctb 10534 alephadd 10537 alephmul 10538 alephexp1 10539 alephsuc3 10540 canthp1lem2 10613 pwfseqlem4a 10621 pwfseqlem4 10622 pwfseqlem5 10623 gchaleph 10631 gchaleph2 10632 hargch 10633 cygctb 19829 ttac 43032 numinfctb 43099 isnumbasgrplem2 43100 isnumbasabl 43102 iscard4 43529 minregex2 43531 harval3 43534 harval3on 43535 aleph1min 43553 |
| Copyright terms: Public domain | W3C validator |