| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8906 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9839 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 Oncon0 6306 ≈ cen 8866 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-card 9832 |
| This theorem is referenced by: oncardval 9848 oncardid 9849 cardnn 9856 iscard 9868 carduni 9874 nnsdomel 9883 harsdom 9888 harsucnn 9891 pm54.43lem 9893 infxpenlem 9904 infxpidm2 9908 onssnum 9931 alephnbtwn 9962 alephnbtwn2 9963 alephordilem1 9964 alephord2 9967 alephsdom 9977 cardaleph 9980 infenaleph 9982 alephinit 9986 iunfictbso 10005 ficardun2 10093 pwsdompw 10094 infunsdom1 10103 ackbij2 10133 cfflb 10150 sdom2en01 10193 fin23lem22 10218 iunctb 10465 alephadd 10468 alephmul 10469 alephexp1 10470 alephsuc3 10471 canthp1lem2 10544 pwfseqlem4a 10552 pwfseqlem4 10553 pwfseqlem5 10554 gchaleph 10562 gchaleph2 10563 hargch 10564 cygctb 19805 ttac 43075 numinfctb 43142 isnumbasgrplem2 43143 isnumbasabl 43145 iscard4 43572 minregex2 43574 harval3 43577 harval3on 43578 aleph1min 43596 |
| Copyright terms: Public domain | W3C validator |