![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version |
Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8337 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | isnumi 9168 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
3 | 1, 2 | mpdan 675 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 class class class wbr 4926 dom cdm 5404 Oncon0 6027 ≈ cen 8302 cardccrd 9157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-ord 6030 df-on 6031 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-en 8306 df-card 9161 |
This theorem is referenced by: oncardval 9177 oncardid 9178 cardnn 9185 iscard 9197 carduni 9203 nnsdomel 9212 harsdom 9217 pm54.43lem 9221 infxpenlem 9232 infxpidm2 9236 onssnum 9259 alephnbtwn 9290 alephnbtwn2 9291 alephordilem1 9292 alephord2 9295 alephsdom 9305 cardaleph 9308 infenaleph 9310 alephinit 9314 iunfictbso 9333 ficardun2 9422 pwsdompw 9423 infunsdom1 9432 ackbij2 9462 cfflb 9478 sdom2en01 9521 fin23lem22 9546 iunctb 9793 alephadd 9796 alephmul 9797 alephexp1 9798 alephsuc3 9799 canthp1lem2 9872 pwfseqlem4a 9880 pwfseqlem4 9881 pwfseqlem5 9882 gchaleph 9890 gchaleph2 9891 hargch 9892 cygctb 18779 ttac 39063 numinfctb 39133 isnumbasgrplem2 39134 isnumbasabl 39136 |
Copyright terms: Public domain | W3C validator |