Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version |
Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8727 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | isnumi 9635 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
3 | 1, 2 | mpdan 683 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ≈ cen 8688 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-en 8692 df-card 9628 |
This theorem is referenced by: oncardval 9644 oncardid 9645 cardnn 9652 iscard 9664 carduni 9670 nnsdomel 9679 harsdom 9684 harsucnn 9687 pm54.43lem 9689 infxpenlem 9700 infxpidm2 9704 onssnum 9727 alephnbtwn 9758 alephnbtwn2 9759 alephordilem1 9760 alephord2 9763 alephsdom 9773 cardaleph 9776 infenaleph 9778 alephinit 9782 iunfictbso 9801 ficardun2 9889 ficardun2OLD 9890 pwsdompw 9891 infunsdom1 9900 ackbij2 9930 cfflb 9946 sdom2en01 9989 fin23lem22 10014 iunctb 10261 alephadd 10264 alephmul 10265 alephexp1 10266 alephsuc3 10267 canthp1lem2 10340 pwfseqlem4a 10348 pwfseqlem4 10349 pwfseqlem5 10350 gchaleph 10358 gchaleph2 10359 hargch 10360 cygctb 19408 ttac 40774 numinfctb 40844 isnumbasgrplem2 40845 isnumbasabl 40847 iscard4 41038 harval3 41041 harval3on 41042 aleph1min 41053 |
Copyright terms: Public domain | W3C validator |