![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version |
Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 9044 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | isnumi 10015 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
3 | 1, 2 | mpdan 686 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 df-card 10008 |
This theorem is referenced by: oncardval 10024 oncardid 10025 cardnn 10032 iscard 10044 carduni 10050 nnsdomel 10059 harsdom 10064 harsucnn 10067 pm54.43lem 10069 infxpenlem 10082 infxpidm2 10086 onssnum 10109 alephnbtwn 10140 alephnbtwn2 10141 alephordilem1 10142 alephord2 10145 alephsdom 10155 cardaleph 10158 infenaleph 10160 alephinit 10164 iunfictbso 10183 ficardun2 10271 pwsdompw 10272 infunsdom1 10281 ackbij2 10311 cfflb 10328 sdom2en01 10371 fin23lem22 10396 iunctb 10643 alephadd 10646 alephmul 10647 alephexp1 10648 alephsuc3 10649 canthp1lem2 10722 pwfseqlem4a 10730 pwfseqlem4 10731 pwfseqlem5 10732 gchaleph 10740 gchaleph2 10741 hargch 10742 cygctb 19934 ttac 42993 numinfctb 43060 isnumbasgrplem2 43061 isnumbasabl 43063 iscard4 43495 minregex2 43497 harval3 43500 harval3on 43501 aleph1min 43519 |
Copyright terms: Public domain | W3C validator |