Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version |
Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8772 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | isnumi 9704 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
3 | 1, 2 | mpdan 684 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 Oncon0 6266 ≈ cen 8730 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 df-card 9697 |
This theorem is referenced by: oncardval 9713 oncardid 9714 cardnn 9721 iscard 9733 carduni 9739 nnsdomel 9748 harsdom 9753 harsucnn 9756 pm54.43lem 9758 infxpenlem 9769 infxpidm2 9773 onssnum 9796 alephnbtwn 9827 alephnbtwn2 9828 alephordilem1 9829 alephord2 9832 alephsdom 9842 cardaleph 9845 infenaleph 9847 alephinit 9851 iunfictbso 9870 ficardun2 9958 ficardun2OLD 9959 pwsdompw 9960 infunsdom1 9969 ackbij2 9999 cfflb 10015 sdom2en01 10058 fin23lem22 10083 iunctb 10330 alephadd 10333 alephmul 10334 alephexp1 10335 alephsuc3 10336 canthp1lem2 10409 pwfseqlem4a 10417 pwfseqlem4 10418 pwfseqlem5 10419 gchaleph 10427 gchaleph2 10428 hargch 10429 cygctb 19493 ttac 40858 numinfctb 40928 isnumbasgrplem2 40929 isnumbasabl 40931 iscard4 41140 minregex2 41142 harval3 41145 harval3on 41146 aleph1min 41164 |
Copyright terms: Public domain | W3C validator |