| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onenon | Structured version Visualization version GIF version | ||
| Description: Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| onenon | ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8915 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | isnumi 9848 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 dom cdm 5621 Oncon0 6313 ≈ cen 8874 cardccrd 9837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-en 8878 df-card 9841 |
| This theorem is referenced by: oncardval 9857 oncardid 9858 cardnn 9865 iscard 9877 carduni 9883 nnsdomel 9892 harsdom 9897 harsucnn 9900 pm54.43lem 9902 infxpenlem 9913 infxpidm2 9917 onssnum 9940 alephnbtwn 9971 alephnbtwn2 9972 alephordilem1 9973 alephord2 9976 alephsdom 9986 cardaleph 9989 infenaleph 9991 alephinit 9995 iunfictbso 10014 ficardun2 10102 pwsdompw 10103 infunsdom1 10112 ackbij2 10142 cfflb 10159 sdom2en01 10202 fin23lem22 10227 iunctb 10474 alephadd 10477 alephmul 10478 alephexp1 10479 alephsuc3 10480 canthp1lem2 10553 pwfseqlem4a 10561 pwfseqlem4 10562 pwfseqlem5 10563 gchaleph 10571 gchaleph2 10572 hargch 10573 cygctb 19808 ttac 43156 numinfctb 43223 isnumbasgrplem2 43224 isnumbasabl 43226 iscard4 43653 minregex2 43655 harval3 43658 harval3on 43659 aleph1min 43677 |
| Copyright terms: Public domain | W3C validator |