| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1fi | Structured version Visualization version GIF version | ||
| Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1fi | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6759 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | frnd 6699 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 3 | ssfi 9143 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵) → ran 𝐹 ∈ Fin) | |
| 4 | 2, 3 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ∈ Fin) |
| 5 | f1f1orn 6814 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| 7 | f1ocnv 6815 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 8 | f1ofo 6810 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
| 9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ◡𝐹:ran 𝐹–onto→𝐴) |
| 10 | fofi 9269 | . 2 ⊢ ((ran 𝐹 ∈ Fin ∧ ◡𝐹:ran 𝐹–onto→𝐴) → 𝐴 ∈ Fin) | |
| 11 | 4, 9, 10 | syl2anc 584 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 –1-1→wf1 6511 –onto→wfo 6512 –1-1-onto→wf1o 6513 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 |
| This theorem is referenced by: ixpfi2 9308 fsumvma 27131 edgusgrnbfin 29307 fourierdlem51 46162 prminf2 47593 |
| Copyright terms: Public domain | W3C validator |