MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fi Structured version   Visualization version   GIF version

Theorem f1fi 9334
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1fi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)

Proof of Theorem f1fi
StepHypRef Expression
1 f1f 6784 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6724 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssfi 9195 . . 3 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
42, 3sylan2 593 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
5 f1f1orn 6839 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
65adantl 481 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
7 f1ocnv 6840 . . 3 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
8 f1ofo 6835 . . 3 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
96, 7, 83syl 18 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:ran 𝐹onto𝐴)
10 fofi 9333 . 2 ((ran 𝐹 ∈ Fin ∧ 𝐹:ran 𝐹onto𝐴) → 𝐴 ∈ Fin)
114, 9, 10syl2anc 584 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wss 3931  ccnv 5664  ran crn 5666  1-1wf1 6538  ontowfo 6539  1-1-ontowf1o 6540  Fincfn 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-1o 8488  df-en 8968  df-dom 8969  df-fin 8971
This theorem is referenced by:  ixpfi2  9372  fsumvma  27193  edgusgrnbfin  29318  fourierdlem51  46129  prminf2  47533
  Copyright terms: Public domain W3C validator