MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fi Structured version   Visualization version   GIF version

Theorem f1fi 8805
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1fi ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)

Proof of Theorem f1fi
StepHypRef Expression
1 f1f 6570 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6516 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssfi 8732 . . 3 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹 ∈ Fin)
42, 3sylan2 594 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 ∈ Fin)
5 f1f1orn 6621 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
65adantl 484 . . 3 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
7 f1ocnv 6622 . . 3 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
8 f1ofo 6617 . . 3 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
96, 7, 83syl 18 . 2 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹:ran 𝐹onto𝐴)
10 fofi 8804 . 2 ((ran 𝐹 ∈ Fin ∧ 𝐹:ran 𝐹onto𝐴) → 𝐴 ∈ Fin)
114, 9, 10syl2anc 586 1 ((𝐵 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  wss 3936  ccnv 5549  ran crn 5551  1-1wf1 6347  ontowfo 6348  1-1-ontowf1o 6349  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-om 7575  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-fin 8507
This theorem is referenced by:  ixpfi2  8816  fsumvma  25783  edgusgrnbfin  27149  fourierdlem51  42435  prminf2  43743
  Copyright terms: Public domain W3C validator