![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fi | Structured version Visualization version GIF version |
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
f1fi | β’ ((π΅ β Fin β§ πΉ:π΄β1-1βπ΅) β π΄ β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6786 | . . . 4 β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄βΆπ΅) | |
2 | 1 | frnd 6724 | . . 3 β’ (πΉ:π΄β1-1βπ΅ β ran πΉ β π΅) |
3 | ssfi 9175 | . . 3 β’ ((π΅ β Fin β§ ran πΉ β π΅) β ran πΉ β Fin) | |
4 | 2, 3 | sylan2 591 | . 2 β’ ((π΅ β Fin β§ πΉ:π΄β1-1βπ΅) β ran πΉ β Fin) |
5 | f1f1orn 6843 | . . . 4 β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄β1-1-ontoβran πΉ) | |
6 | 5 | adantl 480 | . . 3 β’ ((π΅ β Fin β§ πΉ:π΄β1-1βπ΅) β πΉ:π΄β1-1-ontoβran πΉ) |
7 | f1ocnv 6844 | . . 3 β’ (πΉ:π΄β1-1-ontoβran πΉ β β‘πΉ:ran πΉβ1-1-ontoβπ΄) | |
8 | f1ofo 6839 | . . 3 β’ (β‘πΉ:ran πΉβ1-1-ontoβπ΄ β β‘πΉ:ran πΉβontoβπ΄) | |
9 | 6, 7, 8 | 3syl 18 | . 2 β’ ((π΅ β Fin β§ πΉ:π΄β1-1βπ΅) β β‘πΉ:ran πΉβontoβπ΄) |
10 | fofi 9340 | . 2 β’ ((ran πΉ β Fin β§ β‘πΉ:ran πΉβontoβπ΄) β π΄ β Fin) | |
11 | 4, 9, 10 | syl2anc 582 | 1 β’ ((π΅ β Fin β§ πΉ:π΄β1-1βπ΅) β π΄ β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 β wss 3947 β‘ccnv 5674 ran crn 5676 β1-1βwf1 6539 βontoβwfo 6540 β1-1-ontoβwf1o 6541 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-fin 8945 |
This theorem is referenced by: ixpfi2 9352 fsumvma 26952 edgusgrnbfin 28897 fourierdlem51 45171 prminf2 46554 |
Copyright terms: Public domain | W3C validator |