Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1fi | Structured version Visualization version GIF version |
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
f1fi | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6705 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6643 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
3 | ssfi 9013 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵) → ran 𝐹 ∈ Fin) | |
4 | 2, 3 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ∈ Fin) |
5 | f1f1orn 6762 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
7 | f1ocnv 6763 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
8 | f1ofo 6758 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ◡𝐹:ran 𝐹–onto→𝐴) |
10 | fofi 9173 | . 2 ⊢ ((ran 𝐹 ∈ Fin ∧ ◡𝐹:ran 𝐹–onto→𝐴) → 𝐴 ∈ Fin) | |
11 | 4, 9, 10 | syl2anc 584 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3896 ◡ccnv 5604 ran crn 5606 –1-1→wf1 6460 –onto→wfo 6461 –1-1-onto→wf1o 6462 Fincfn 8779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-om 7756 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-fin 8783 |
This theorem is referenced by: ixpfi2 9185 fsumvma 26432 edgusgrnbfin 27848 fourierdlem51 43942 prminf2 45299 |
Copyright terms: Public domain | W3C validator |