![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fi | Structured version Visualization version GIF version |
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
f1fi | ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6338 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6285 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
3 | ssfi 8449 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵) → ran 𝐹 ∈ Fin) | |
4 | 2, 3 | sylan2 586 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ∈ Fin) |
5 | f1f1orn 6389 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
6 | 5 | adantl 475 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
7 | f1ocnv 6390 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
8 | f1ofo 6385 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ◡𝐹:ran 𝐹–onto→𝐴) |
10 | fofi 8521 | . 2 ⊢ ((ran 𝐹 ∈ Fin ∧ ◡𝐹:ran 𝐹–onto→𝐴) → 𝐴 ∈ Fin) | |
11 | 4, 9, 10 | syl2anc 579 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 ⊆ wss 3798 ◡ccnv 5341 ran crn 5343 –1-1→wf1 6120 –onto→wfo 6121 –1-1-onto→wf1o 6122 Fincfn 8222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-om 7327 df-1o 7826 df-er 8009 df-en 8223 df-dom 8224 df-fin 8226 |
This theorem is referenced by: ixpfi2 8533 fsumvma 25351 edgusgrnbfin 26671 fourierdlem51 41161 prminf2 42323 |
Copyright terms: Public domain | W3C validator |