![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgusgrnbfin | Structured version Visualization version GIF version |
Description: The number of neighbors of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
Ref | Expression |
---|---|
nbusgrf1o.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
edgusgrnbfin | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbusgrf1o.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbusgrf1o.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbusgrf1o 26850 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) |
4 | f1ofo 6449 | . . . . 5 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → 𝑓:(𝐺 NeighbVtx 𝑈)–onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) | |
5 | fofi 8601 | . . . . . 6 ⊢ (((𝐺 NeighbVtx 𝑈) ∈ Fin ∧ 𝑓:(𝐺 NeighbVtx 𝑈)–onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) → {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin) | |
6 | 5 | expcom 406 | . . . . 5 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ((𝐺 NeighbVtx 𝑈) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ((𝐺 NeighbVtx 𝑈) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
8 | 7 | exlimiv 1889 | . . 3 ⊢ (∃𝑓 𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ((𝐺 NeighbVtx 𝑈) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
9 | 3, 8 | syl 17 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑈) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
10 | f1of1 6441 | . . . . 5 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → 𝑓:(𝐺 NeighbVtx 𝑈)–1-1→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) | |
11 | f1fi 8602 | . . . . . 6 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin ∧ 𝑓:(𝐺 NeighbVtx 𝑈)–1-1→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) → (𝐺 NeighbVtx 𝑈) ∈ Fin) | |
12 | 11 | expcom 406 | . . . . 5 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–1-1→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin → (𝐺 NeighbVtx 𝑈) ∈ Fin)) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin → (𝐺 NeighbVtx 𝑈) ∈ Fin)) |
14 | 13 | exlimiv 1889 | . . 3 ⊢ (∃𝑓 𝑓:(𝐺 NeighbVtx 𝑈)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} → ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin → (𝐺 NeighbVtx 𝑈) ∈ Fin)) |
15 | 3, 14 | syl 17 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin → (𝐺 NeighbVtx 𝑈) ∈ Fin)) |
16 | 9, 15 | impbid 204 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2048 {crab 3089 –1-1→wf1 6183 –onto→wfo 6184 –1-1-onto→wf1o 6185 ‘cfv 6186 (class class class)co 6974 Fincfn 8302 Vtxcvtx 26478 Edgcedg 26529 USGraphcusgr 26631 NeighbVtx cnbgr 26811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-rep 5047 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-int 4748 df-iun 4792 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7498 df-2nd 7499 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-1o 7901 df-2o 7902 df-oadd 7905 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-fin 8306 df-dju 9120 df-card 9158 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-nn 11436 df-2 11500 df-n0 11705 df-xnn0 11777 df-z 11791 df-uz 12056 df-fz 12706 df-hash 13503 df-edg 26530 df-upgr 26564 df-umgr 26565 df-uspgr 26632 df-usgr 26633 df-nbgr 26812 |
This theorem is referenced by: nbusgrfi 26853 |
Copyright terms: Public domain | W3C validator |