MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptrecl Structured version   Visualization version   GIF version

Theorem dvmptrecl 25523
Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvmptrecl.s (𝜑𝑆 ⊆ ℝ)
dvmptrecl.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvmptrecl.v ((𝜑𝑥𝑆) → 𝐵𝑉)
dvmptrecl.b (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
Assertion
Ref Expression
dvmptrecl ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptrecl
StepHypRef Expression
1 dvmptrecl.a . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
21fmpttd 7110 . . . 4 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
3 dvmptrecl.s . . . 4 (𝜑𝑆 ⊆ ℝ)
4 dvfre 25450 . . . 4 (((𝑥𝑆𝐴):𝑆⟶ℝ ∧ 𝑆 ⊆ ℝ) → (ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ)
52, 3, 4syl2anc 585 . . 3 (𝜑 → (ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ)
6 dvmptrecl.b . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
76dmeqd 5903 . . . . 5 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
8 dvmptrecl.v . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵𝑉)
98ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
10 dmmptg 6238 . . . . . 6 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
119, 10syl 17 . . . . 5 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
127, 11eqtrd 2773 . . . 4 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
136, 12feq12d 6702 . . 3 (𝜑 → ((ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ))
145, 13mpbid 231 . 2 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
1514fvmptelcdm 7108 1 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  wss 3947  cmpt 5230  dom cdm 5675  wf 6536  (class class class)co 7404  cr 11105   D cdv 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-icc 13327  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-rest 17364  df-topn 17365  df-topgen 17385  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-cncf 24376  df-limc 25365  df-dv 25366
This theorem is referenced by:  dvfsumlem1  25525  dvfsumlem2  25526  dvfsumlem3  25527  dvfsumlem4  25528  dvfsumrlimge0  25529  dvfsumrlim  25530  dvfsumrlim2  25531  dvfsum2  25533  gg-dvfsumlem2  35121
  Copyright terms: Public domain W3C validator