![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptrecl | Structured version Visualization version GIF version |
Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvmptrecl.s | ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
dvmptrecl.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvmptrecl.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvmptrecl.b | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
Ref | Expression |
---|---|
dvmptrecl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptrecl.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
2 | 1 | fmpttd 7149 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶ℝ) |
3 | dvmptrecl.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℝ) | |
4 | dvfre 26009 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶ℝ ∧ 𝑆 ⊆ ℝ) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)):dom (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴))⟶ℝ) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)):dom (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴))⟶ℝ) |
6 | dvmptrecl.b | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
7 | 6 | dmeqd 5930 | . . . . 5 ⊢ (𝜑 → dom (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = dom (𝑥 ∈ 𝑆 ↦ 𝐵)) |
8 | dvmptrecl.v | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
9 | 8 | ralrimiva 3152 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ 𝑉) |
10 | dmmptg 6273 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑆 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑆 ↦ 𝐵) = 𝑆) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝑆 ↦ 𝐵) = 𝑆) |
12 | 7, 11 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → dom (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = 𝑆) |
13 | 6, 12 | feq12d 6735 | . . 3 ⊢ (𝜑 → ((ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)):dom (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ 𝑆 ↦ 𝐵):𝑆⟶ℝ)) |
14 | 5, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵):𝑆⟶ℝ) |
15 | 14 | fvmptelcdm 7147 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 (class class class)co 7448 ℝcr 11183 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-cncf 24923 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvfsumlem1 26086 dvfsumlem2 26087 dvfsumlem2OLD 26088 dvfsumlem3 26089 dvfsumlem4 26090 dvfsumrlimge0 26091 dvfsumrlim 26092 dvfsumrlim2 26093 dvfsum2 26095 |
Copyright terms: Public domain | W3C validator |