Proof of Theorem dvfsumge
Step | Hyp | Ref
| Expression |
1 | | dvfsumle.m |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | df-neg 11138 |
. . . . . 6
⊢ -𝐴 = (0 − 𝐴) |
3 | 2 | mpteq2i 5175 |
. . . . 5
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ -𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (0 − 𝐴)) |
4 | | eqid 2738 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
5 | 4 | subcn 23935 |
. . . . . 6
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
6 | | 0red 10909 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
7 | | eluzel2 12516 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
8 | 1, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 8 | zred 12355 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
10 | | eluzelz 12521 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
11 | 1, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
12 | 11 | zred 12355 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
13 | | iccssre 13090 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ) |
14 | 9, 12, 13 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ ℝ) |
15 | | ax-resscn 10859 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
16 | 14, 15 | sstrdi 3929 |
. . . . . . 7
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ ℂ) |
17 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ⊆
ℂ) |
18 | | cncfmptc 23981 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℝ ⊆
ℂ) → (𝑥 ∈
(𝑀[,]𝑁) ↦ 0) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
19 | 6, 16, 17, 18 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 0) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
20 | | dvfsumle.a |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
21 | | resubcl 11215 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 − 𝐴) ∈ ℝ) |
22 | 4, 5, 19, 20, 15, 21 | cncfmpt2ss 23985 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (0 − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
23 | 3, 22 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ -𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
24 | | negex 11149 |
. . . . 5
⊢ -𝐵 ∈ V |
25 | 24 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → -𝐵 ∈ V) |
26 | | reelprrecn 10894 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
27 | 26 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
28 | | ioossicc 13094 |
. . . . . . . 8
⊢ (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) |
29 | 28 | sseli 3913 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁)) |
30 | | cncff 23962 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
31 | 20, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
32 | 31 | fvmptelrn 6969 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
33 | 29, 32 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ) |
34 | 33 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ) |
35 | | dvfsumle.v |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
36 | | dvfsumle.b |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
37 | 27, 34, 35, 36 | dvmptneg 25035 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ -𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ -𝐵)) |
38 | | dvfsumle.c |
. . . . 5
⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) |
39 | 38 | negeqd 11145 |
. . . 4
⊢ (𝑥 = 𝑀 → -𝐴 = -𝐶) |
40 | | dvfsumle.d |
. . . . 5
⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) |
41 | 40 | negeqd 11145 |
. . . 4
⊢ (𝑥 = 𝑁 → -𝐴 = -𝐷) |
42 | | dvfsumle.x |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) |
43 | 42 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → -𝑋 ∈ ℝ) |
44 | | dvfsumge.l |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵 ≤ 𝑋) |
45 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ) |
46 | 45 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈
ℝ*) |
47 | | elfzole1 13324 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝑘) |
48 | 47 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ≤ 𝑘) |
49 | | iooss1 13043 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ*
∧ 𝑀 ≤ 𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
50 | 46, 48, 49 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
51 | 12 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ) |
52 | 51 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈
ℝ*) |
53 | | fzofzp1 13412 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
54 | 53 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
55 | | elfzle2 13189 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁) |
57 | | iooss2 13044 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ*
∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
58 | 52, 56, 57 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
59 | 50, 58 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
60 | 59 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑀(,)𝑁)) |
61 | 32 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
62 | 29, 61 | sylan2 592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ) |
63 | 62 | fmpttd 6971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ) |
64 | | ioossre 13069 |
. . . . . . . . . . 11
⊢ (𝑀(,)𝑁) ⊆ ℝ |
65 | | dvfre 25020 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
66 | 63, 64, 65 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
67 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
68 | 67 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
69 | 35 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
70 | 69 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ 𝑉) |
71 | | dmmptg 6134 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ 𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
73 | 68, 72 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁)) |
74 | 67, 73 | feq12d 6572 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)) |
75 | 66, 74 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
76 | 75 | fvmptelrn 6969 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ) |
77 | 60, 76 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝐵 ∈ ℝ) |
78 | 77 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵 ∈ ℝ) |
79 | 42 | adantrr 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋 ∈ ℝ) |
80 | 78, 79 | lenegd 11484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (𝐵 ≤ 𝑋 ↔ -𝑋 ≤ -𝐵)) |
81 | 44, 80 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → -𝑋 ≤ -𝐵) |
82 | 1, 23, 25, 37, 39, 41, 43, 81 | dvfsumle 25090 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)-𝑋 ≤ (-𝐷 − -𝐶)) |
83 | | fzofi 13622 |
. . . . 5
⊢ (𝑀..^𝑁) ∈ Fin |
84 | 83 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
85 | 42 | recnd 10934 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ) |
86 | 84, 85 | fsumneg 15427 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)-𝑋 = -Σ𝑘 ∈ (𝑀..^𝑁)𝑋) |
87 | 40 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐴 ∈ ℝ ↔ 𝐷 ∈ ℝ)) |
88 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) |
89 | 88 | fmpt 6966 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
90 | 31, 89 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
91 | 9 | rexrd 10956 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℝ*) |
92 | 12 | rexrd 10956 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
93 | | eluzle 12524 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
94 | 1, 93 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
95 | | ubicc2 13126 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ*
∧ 𝑁 ∈
ℝ* ∧ 𝑀
≤ 𝑁) → 𝑁 ∈ (𝑀[,]𝑁)) |
96 | 91, 92, 94, 95 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (𝑀[,]𝑁)) |
97 | 87, 90, 96 | rspcdva 3554 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ ℝ) |
98 | 97 | recnd 10934 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℂ) |
99 | 38 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐴 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
100 | | lbicc2 13125 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ*
∧ 𝑁 ∈
ℝ* ∧ 𝑀
≤ 𝑁) → 𝑀 ∈ (𝑀[,]𝑁)) |
101 | 91, 92, 94, 100 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀[,]𝑁)) |
102 | 99, 90, 101 | rspcdva 3554 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
103 | 102 | recnd 10934 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
104 | 98, 103 | neg2subd 11279 |
. . . 4
⊢ (𝜑 → (-𝐷 − -𝐶) = (𝐶 − 𝐷)) |
105 | 98, 103 | negsubdi2d 11278 |
. . . 4
⊢ (𝜑 → -(𝐷 − 𝐶) = (𝐶 − 𝐷)) |
106 | 104, 105 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (-𝐷 − -𝐶) = -(𝐷 − 𝐶)) |
107 | 82, 86, 106 | 3brtr3d 5101 |
. 2
⊢ (𝜑 → -Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ -(𝐷 − 𝐶)) |
108 | 97, 102 | resubcld 11333 |
. . 3
⊢ (𝜑 → (𝐷 − 𝐶) ∈ ℝ) |
109 | 84, 42 | fsumrecl 15374 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ∈ ℝ) |
110 | 108, 109 | lenegd 11484 |
. 2
⊢ (𝜑 → ((𝐷 − 𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ↔ -Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ -(𝐷 − 𝐶))) |
111 | 107, 110 | mpbird 256 |
1
⊢ (𝜑 → (𝐷 − 𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋) |