MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumge Structured version   Visualization version   GIF version

Theorem dvfsumge 25091
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumle.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvfsumle.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumle.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumle.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumle.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
dvfsumge.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵𝑋)
Assertion
Ref Expression
dvfsumge (𝜑 → (𝐷𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem dvfsumge
StepHypRef Expression
1 dvfsumle.m . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 df-neg 11138 . . . . . 6 -𝐴 = (0 − 𝐴)
32mpteq2i 5175 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ -𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (0 − 𝐴))
4 eqid 2738 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54subcn 23935 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6 0red 10909 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
7 eluzel2 12516 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
98zred 12355 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
10 eluzelz 12521 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
111, 10syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
1211zred 12355 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
13 iccssre 13090 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
149, 12, 13syl2anc 583 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
15 ax-resscn 10859 . . . . . . . 8 ℝ ⊆ ℂ
1614, 15sstrdi 3929 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ ℂ)
1715a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
18 cncfmptc 23981 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 0) ∈ ((𝑀[,]𝑁)–cn→ℝ))
196, 16, 17, 18syl3anc 1369 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 0) ∈ ((𝑀[,]𝑁)–cn→ℝ))
20 dvfsumle.a . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
21 resubcl 11215 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
224, 5, 19, 20, 15, 21cncfmpt2ss 23985 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (0 − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
233, 22eqeltrid 2843 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ -𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
24 negex 11149 . . . . 5 -𝐵 ∈ V
2524a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → -𝐵 ∈ V)
26 reelprrecn 10894 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
28 ioossicc 13094 . . . . . . . 8 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
2928sseli 3913 . . . . . . 7 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
30 cncff 23962 . . . . . . . . 9 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
3120, 30syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
3231fvmptelrn 6969 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
3329, 32sylan2 592 . . . . . 6 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
3433recnd 10934 . . . . 5 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
35 dvfsumle.v . . . . 5 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
36 dvfsumle.b . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
3727, 34, 35, 36dvmptneg 25035 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ -𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ -𝐵))
38 dvfsumle.c . . . . 5 (𝑥 = 𝑀𝐴 = 𝐶)
3938negeqd 11145 . . . 4 (𝑥 = 𝑀 → -𝐴 = -𝐶)
40 dvfsumle.d . . . . 5 (𝑥 = 𝑁𝐴 = 𝐷)
4140negeqd 11145 . . . 4 (𝑥 = 𝑁 → -𝐴 = -𝐷)
42 dvfsumle.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
4342renegcld 11332 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → -𝑋 ∈ ℝ)
44 dvfsumge.l . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵𝑋)
459adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
4645rexrd 10956 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
47 elfzole1 13324 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
4847adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
49 iooss1 13043 . . . . . . . . . . 11 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
5046, 48, 49syl2anc 583 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
5112adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
5251rexrd 10956 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
53 fzofzp1 13412 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
5453adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
55 elfzle2 13189 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
5654, 55syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
57 iooss2 13044 . . . . . . . . . . 11 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
5852, 56, 57syl2anc 583 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
5950, 58sstrd 3927 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
6059sselda 3917 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑀(,)𝑁))
6132adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
6229, 61sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
6362fmpttd 6971 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
64 ioossre 13069 . . . . . . . . . . 11 (𝑀(,)𝑁) ⊆ ℝ
65 dvfre 25020 . . . . . . . . . . 11 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
6663, 64, 65sylancl 585 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
6736adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
6867dmeqd 5803 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
6935adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
7069ralrimiva 3107 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉)
71 dmmptg 6134 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
7270, 71syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
7368, 72eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
7467, 73feq12d 6572 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
7566, 74mpbid 231 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
7675fvmptelrn 6969 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
7760, 76syldan 590 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝐵 ∈ ℝ)
7877anasss 466 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵 ∈ ℝ)
7942adantrr 713 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋 ∈ ℝ)
8078, 79lenegd 11484 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (𝐵𝑋 ↔ -𝑋 ≤ -𝐵))
8144, 80mpbid 231 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → -𝑋 ≤ -𝐵)
821, 23, 25, 37, 39, 41, 43, 81dvfsumle 25090 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)-𝑋 ≤ (-𝐷 − -𝐶))
83 fzofi 13622 . . . . 5 (𝑀..^𝑁) ∈ Fin
8483a1i 11 . . . 4 (𝜑 → (𝑀..^𝑁) ∈ Fin)
8542recnd 10934 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
8684, 85fsumneg 15427 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)-𝑋 = -Σ𝑘 ∈ (𝑀..^𝑁)𝑋)
8740eleq1d 2823 . . . . . . 7 (𝑥 = 𝑁 → (𝐴 ∈ ℝ ↔ 𝐷 ∈ ℝ))
88 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
8988fmpt 6966 . . . . . . . 8 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
9031, 89sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
919rexrd 10956 . . . . . . . 8 (𝜑𝑀 ∈ ℝ*)
9212rexrd 10956 . . . . . . . 8 (𝜑𝑁 ∈ ℝ*)
93 eluzle 12524 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
941, 93syl 17 . . . . . . . 8 (𝜑𝑀𝑁)
95 ubicc2 13126 . . . . . . . 8 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → 𝑁 ∈ (𝑀[,]𝑁))
9691, 92, 94, 95syl3anc 1369 . . . . . . 7 (𝜑𝑁 ∈ (𝑀[,]𝑁))
9787, 90, 96rspcdva 3554 . . . . . 6 (𝜑𝐷 ∈ ℝ)
9897recnd 10934 . . . . 5 (𝜑𝐷 ∈ ℂ)
9938eleq1d 2823 . . . . . . 7 (𝑥 = 𝑀 → (𝐴 ∈ ℝ ↔ 𝐶 ∈ ℝ))
100 lbicc2 13125 . . . . . . . 8 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → 𝑀 ∈ (𝑀[,]𝑁))
10191, 92, 94, 100syl3anc 1369 . . . . . . 7 (𝜑𝑀 ∈ (𝑀[,]𝑁))
10299, 90, 101rspcdva 3554 . . . . . 6 (𝜑𝐶 ∈ ℝ)
103102recnd 10934 . . . . 5 (𝜑𝐶 ∈ ℂ)
10498, 103neg2subd 11279 . . . 4 (𝜑 → (-𝐷 − -𝐶) = (𝐶𝐷))
10598, 103negsubdi2d 11278 . . . 4 (𝜑 → -(𝐷𝐶) = (𝐶𝐷))
106104, 105eqtr4d 2781 . . 3 (𝜑 → (-𝐷 − -𝐶) = -(𝐷𝐶))
10782, 86, 1063brtr3d 5101 . 2 (𝜑 → -Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ -(𝐷𝐶))
10897, 102resubcld 11333 . . 3 (𝜑 → (𝐷𝐶) ∈ ℝ)
10984, 42fsumrecl 15374 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ∈ ℝ)
110108, 109lenegd 11484 . 2 (𝜑 → ((𝐷𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ↔ -Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ -(𝐷𝐶)))
111107, 110mpbird 256 1 (𝜑 → (𝐷𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939  cle 10941  cmin 11135  -cneg 11136  cz 12249  cuz 12511  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  Σcsu 15325  TopOpenctopn 17049  fldccnfld 20510  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator