MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlk Structured version   Visualization version   GIF version

Theorem 0wlk 27894
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
0wlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0wlk (𝐺𝑈 → (∅(Walks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))

Proof of Theorem 0wlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0wlk.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2821 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2iswlkg 27394 . 2 (𝐺𝑈 → (∅(Walks‘𝐺)𝑃 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))))
4 ral0 4455 . . . . 5 𝑘 ∈ ∅ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))
5 hash0 13727 . . . . . . . 8 (♯‘∅) = 0
65oveq2i 7166 . . . . . . 7 (0..^(♯‘∅)) = (0..^0)
7 fzo0 13060 . . . . . . 7 (0..^0) = ∅
86, 7eqtri 2844 . . . . . 6 (0..^(♯‘∅)) = ∅
98raleqi 3413 . . . . 5 (∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) ↔ ∀𝑘 ∈ ∅ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))
104, 9mpbir 233 . . . 4 𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))
1110biantru 532 . . 3 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))
125eqcomi 2830 . . . . . 6 0 = (♯‘∅)
1312oveq2i 7166 . . . . 5 (0...0) = (0...(♯‘∅))
1413feq2i 6505 . . . 4 (𝑃:(0...0)⟶𝑉𝑃:(0...(♯‘∅))⟶𝑉)
15 wrd0 13888 . . . . 5 ∅ ∈ Word dom (iEdg‘𝐺)
1615biantrur 533 . . . 4 (𝑃:(0...(♯‘∅))⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉))
1714, 16bitri 277 . . 3 (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉))
18 df-3an 1085 . . 3 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))
1911, 17, 183bitr4ri 306 . 2 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ 𝑃:(0...0)⟶𝑉)
203, 19syl6bb 289 1 (𝐺𝑈 → (∅(Walks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  if-wif 1057  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935  c0 4290  {csn 4566  {cpr 4568   class class class wbr 5065  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7155  0cc0 10536  1c1 10537   + caddc 10539  ...cfz 12891  ..^cfzo 13032  chash 13689  Word cword 13860  Vtxcvtx 26780  iEdgciedg 26781  Walkscwlks 27377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-wlks 27380
This theorem is referenced by:  is0wlk  27895  0wlkon  27898  0trl  27900  0clwlk  27908
  Copyright terms: Public domain W3C validator