MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlk Structured version   Visualization version   GIF version

Theorem 0wlk 28381
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
0wlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0wlk (𝐺𝑈 → (∅(Walks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))

Proof of Theorem 0wlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0wlk.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2738 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2iswlkg 27883 . 2 (𝐺𝑈 → (∅(Walks‘𝐺)𝑃 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))))
4 ral0 4440 . . . . 5 𝑘 ∈ ∅ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))
5 hash0 14010 . . . . . . . 8 (♯‘∅) = 0
65oveq2i 7266 . . . . . . 7 (0..^(♯‘∅)) = (0..^0)
7 fzo0 13339 . . . . . . 7 (0..^0) = ∅
86, 7eqtri 2766 . . . . . 6 (0..^(♯‘∅)) = ∅
98raleqi 3337 . . . . 5 (∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) ↔ ∀𝑘 ∈ ∅ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))
104, 9mpbir 230 . . . 4 𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))
1110biantru 529 . . 3 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))
125eqcomi 2747 . . . . . 6 0 = (♯‘∅)
1312oveq2i 7266 . . . . 5 (0...0) = (0...(♯‘∅))
1413feq2i 6576 . . . 4 (𝑃:(0...0)⟶𝑉𝑃:(0...(♯‘∅))⟶𝑉)
15 wrd0 14170 . . . . 5 ∅ ∈ Word dom (iEdg‘𝐺)
1615biantrur 530 . . . 4 (𝑃:(0...(♯‘∅))⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉))
1714, 16bitri 274 . . 3 (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉))
18 df-3an 1087 . . 3 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))
1911, 17, 183bitr4ri 303 . 2 ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ 𝑃:(0...0)⟶𝑉)
203, 19bitrdi 286 1 (𝐺𝑈 → (∅(Walks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  c0 4253  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869
This theorem is referenced by:  is0wlk  28382  0wlkon  28385  0trl  28387  0clwlk  28395
  Copyright terms: Public domain W3C validator