![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wlk | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0wlk | ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2725 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | iswlkg 29499 | . 2 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))) |
4 | ral0 4514 | . . . . 5 ⊢ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) | |
5 | hash0 14362 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
6 | 5 | oveq2i 7430 | . . . . . . 7 ⊢ (0..^(♯‘∅)) = (0..^0) |
7 | fzo0 13691 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
8 | 6, 7 | eqtri 2753 | . . . . . 6 ⊢ (0..^(♯‘∅)) = ∅ |
9 | 8 | raleqi 3312 | . . . . 5 ⊢ (∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) ↔ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
10 | 4, 9 | mpbir 230 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) |
11 | 10 | biantru 528 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
12 | 5 | eqcomi 2734 | . . . . . 6 ⊢ 0 = (♯‘∅) |
13 | 12 | oveq2i 7430 | . . . . 5 ⊢ (0...0) = (0...(♯‘∅)) |
14 | 13 | feq2i 6715 | . . . 4 ⊢ (𝑃:(0...0)⟶𝑉 ↔ 𝑃:(0...(♯‘∅))⟶𝑉) |
15 | wrd0 14525 | . . . . 5 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
16 | 15 | biantrur 529 | . . . 4 ⊢ (𝑃:(0...(♯‘∅))⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉)) |
17 | 14, 16 | bitri 274 | . . 3 ⊢ (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉)) |
18 | df-3an 1086 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) | |
19 | 11, 17, 18 | 3bitr4ri 303 | . 2 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ 𝑃:(0...0)⟶𝑉) |
20 | 3, 19 | bitrdi 286 | 1 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 if-wif 1060 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ⊆ wss 3944 ∅c0 4322 {csn 4630 {cpr 4632 class class class wbr 5149 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 + caddc 11143 ...cfz 13519 ..^cfzo 13662 ♯chash 14325 Word cword 14500 Vtxcvtx 28881 iEdgciedg 28882 Walkscwlks 29482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-wlks 29485 |
This theorem is referenced by: is0wlk 29999 0wlkon 30002 0trl 30004 0clwlk 30012 |
Copyright terms: Public domain | W3C validator |