| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0wlk | Structured version Visualization version GIF version | ||
| Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 0wlk | ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2734 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | iswlkg 29559 | . 2 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))) |
| 4 | ral0 4493 | . . . . 5 ⊢ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) | |
| 5 | hash0 14388 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
| 6 | 5 | oveq2i 7424 | . . . . . . 7 ⊢ (0..^(♯‘∅)) = (0..^0) |
| 7 | fzo0 13705 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
| 8 | 6, 7 | eqtri 2757 | . . . . . 6 ⊢ (0..^(♯‘∅)) = ∅ |
| 9 | 8 | raleqi 3307 | . . . . 5 ⊢ (∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) ↔ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
| 10 | 4, 9 | mpbir 231 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) |
| 11 | 10 | biantru 529 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
| 12 | 5 | eqcomi 2743 | . . . . . 6 ⊢ 0 = (♯‘∅) |
| 13 | 12 | oveq2i 7424 | . . . . 5 ⊢ (0...0) = (0...(♯‘∅)) |
| 14 | 13 | feq2i 6708 | . . . 4 ⊢ (𝑃:(0...0)⟶𝑉 ↔ 𝑃:(0...(♯‘∅))⟶𝑉) |
| 15 | wrd0 14559 | . . . . 5 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
| 16 | 15 | biantrur 530 | . . . 4 ⊢ (𝑃:(0...(♯‘∅))⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉)) |
| 17 | 14, 16 | bitri 275 | . . 3 ⊢ (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉)) |
| 18 | df-3an 1088 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) | |
| 19 | 11, 17, 18 | 3bitr4ri 304 | . 2 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ 𝑃:(0...0)⟶𝑉) |
| 20 | 3, 19 | bitrdi 287 | 1 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ∅c0 4313 {csn 4606 {cpr 4608 class class class wbr 5123 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 ...cfz 13529 ..^cfzo 13676 ♯chash 14351 Word cword 14534 Vtxcvtx 28941 iEdgciedg 28942 Walkscwlks 29542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-wlks 29545 |
| This theorem is referenced by: is0wlk 30064 0wlkon 30067 0trl 30069 0clwlk 30077 |
| Copyright terms: Public domain | W3C validator |