Step | Hyp | Ref
| Expression |
1 | | 0wlk.v |
. . 3
β’ π = (VtxβπΊ) |
2 | | eqid 2730 |
. . 3
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
3 | 1, 2 | iswlkg 29135 |
. 2
β’ (πΊ β π β (β
(WalksβπΊ)π β (β
β Word dom
(iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ β§ βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ)))))) |
4 | | ral0 4513 |
. . . . 5
β’
βπ β
β
if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ))) |
5 | | hash0 14333 |
. . . . . . . 8
β’
(β―ββ
) = 0 |
6 | 5 | oveq2i 7424 |
. . . . . . 7
β’
(0..^(β―ββ
)) = (0..^0) |
7 | | fzo0 13662 |
. . . . . . 7
β’ (0..^0) =
β
|
8 | 6, 7 | eqtri 2758 |
. . . . . 6
β’
(0..^(β―ββ
)) = β
|
9 | 8 | raleqi 3321 |
. . . . 5
β’
(βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ))) β βπ β β
if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ)))) |
10 | 4, 9 | mpbir 230 |
. . . 4
β’
βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ))) |
11 | 10 | biantru 528 |
. . 3
β’ ((β
β Word dom (iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ) β ((β
β Word
dom (iEdgβπΊ) β§
π:(0...(β―ββ
))βΆπ) β§ βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ))))) |
12 | 5 | eqcomi 2739 |
. . . . . 6
β’ 0 =
(β―ββ
) |
13 | 12 | oveq2i 7424 |
. . . . 5
β’ (0...0) =
(0...(β―ββ
)) |
14 | 13 | feq2i 6710 |
. . . 4
β’ (π:(0...0)βΆπ β π:(0...(β―ββ
))βΆπ) |
15 | | wrd0 14495 |
. . . . 5
β’ β
β Word dom (iEdgβπΊ) |
16 | 15 | biantrur 529 |
. . . 4
β’ (π:(0...(β―ββ
))βΆπ β (β
β Word dom
(iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ)) |
17 | 14, 16 | bitri 274 |
. . 3
β’ (π:(0...0)βΆπ β (β
β Word dom
(iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ)) |
18 | | df-3an 1087 |
. . 3
β’ ((β
β Word dom (iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ β§ βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ)))) β ((β
β
Word dom (iEdgβπΊ)
β§ π:(0...(β―ββ
))βΆπ) β§ βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ))))) |
19 | 11, 17, 18 | 3bitr4ri 303 |
. 2
β’ ((β
β Word dom (iEdgβπΊ) β§ π:(0...(β―ββ
))βΆπ β§ βπ β
(0..^(β―ββ
))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(β
βπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(β
βπ)))) β π:(0...0)βΆπ) |
20 | 3, 19 | bitrdi 286 |
1
β’ (πΊ β π β (β
(WalksβπΊ)π β π:(0...0)βΆπ)) |