| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardf | Structured version Visualization version GIF version | ||
| Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardf | ⊢ card:V⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9983 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 1 | fdmi 6747 | . . . 4 ⊢ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥} |
| 3 | cardeqv 10509 | . . . 4 ⊢ dom card = V | |
| 4 | 2, 3 | eqtr3i 2767 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥} = V |
| 5 | 4 | feq2i 6728 | . 2 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On ↔ card:V⟶On) |
| 6 | 1, 5 | mpbi 230 | 1 ⊢ card:V⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2714 ∃wrex 3070 Vcvv 3480 class class class wbr 5143 dom cdm 5685 Oncon0 6384 ⟶wf 6557 ≈ cen 8982 cardccrd 9975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-ac2 10503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-en 8986 df-card 9979 df-ac 10156 |
| This theorem is referenced by: inar1 10815 |
| Copyright terms: Public domain | W3C validator |