![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardf | Structured version Visualization version GIF version |
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardf | ⊢ card:V⟶On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9160 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 1 | fdmi 6348 | . . . 4 ⊢ dom card = {𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥} |
3 | cardeqv 9683 | . . . 4 ⊢ dom card = V | |
4 | 2, 3 | eqtr3i 2798 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥} = V |
5 | 4 | feq2i 6330 | . 2 ⊢ (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On ↔ card:V⟶On) |
6 | 1, 5 | mpbi 222 | 1 ⊢ card:V⟶On |
Colors of variables: wff setvar class |
Syntax hints: {cab 2752 ∃wrex 3083 Vcvv 3409 class class class wbr 4923 dom cdm 5401 Oncon0 6023 ⟶wf 6178 ≈ cen 8297 cardccrd 9152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-ac2 9677 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-wrecs 7744 df-recs 7806 df-en 8301 df-card 9156 df-ac 9330 |
This theorem is referenced by: inar1 9989 |
Copyright terms: Public domain | W3C validator |