| Mathbox for Kunhao Zheng |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > amgmw2d | Structured version Visualization version GIF version | ||
| Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44230). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| amgmw2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| amgmw2d.1 | ⊢ (𝜑 → 𝑃 ∈ ℝ+) |
| amgmw2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| amgmw2d.3 | ⊢ (𝜑 → 𝑄 ∈ ℝ+) |
| amgmw2d.4 | ⊢ (𝜑 → (𝑃 + 𝑄) = 1) |
| Ref | Expression |
|---|---|
| amgmw2d | ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 2 | fzofi 13878 | . . . 4 ⊢ (0..^2) ∈ Fin | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
| 4 | 2nn 12195 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 5 | lbfzo0 13596 | . . . . 5 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^2) |
| 7 | ne0i 4291 | . . . 4 ⊢ (0 ∈ (0..^2) → (0..^2) ≠ ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
| 9 | amgmw2d.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | amgmw2d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 11 | 9, 10 | s2cld 14775 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
| 12 | wrdf 14422 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
| 14 | s2len 14793 | . . . . . 6 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
| 15 | 14 | oveq2i 7357 | . . . . 5 ⊢ (0..^(♯‘〈“𝐴𝐵”〉)) = (0..^2) |
| 16 | 15 | feq2i 6643 | . . . 4 ⊢ (〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 17 | 13, 16 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 18 | amgmw2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ+) | |
| 19 | amgmw2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ+) | |
| 20 | 18, 19 | s2cld 14775 | . . . . 5 ⊢ (𝜑 → 〈“𝑃𝑄”〉 ∈ Word ℝ+) |
| 21 | wrdf 14422 | . . . . 5 ⊢ (〈“𝑃𝑄”〉 ∈ Word ℝ+ → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) |
| 23 | s2len 14793 | . . . . . 6 ⊢ (♯‘〈“𝑃𝑄”〉) = 2 | |
| 24 | 23 | oveq2i 7357 | . . . . 5 ⊢ (0..^(♯‘〈“𝑃𝑄”〉)) = (0..^2) |
| 25 | 24 | feq2i 6643 | . . . 4 ⊢ (〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+ ↔ 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
| 26 | 22, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
| 27 | cnring 21325 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
| 28 | ringmnd 20159 | . . . . . 6 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 29 | 27, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 30 | 18 | rpcnd 12933 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 31 | 19 | rpcnd 12933 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 32 | cnfldbas 21293 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 33 | cnfldadd 21295 | . . . . . 6 ⊢ + = (+g‘ℂfld) | |
| 34 | 32, 33 | gsumws2 18747 | . . . . 5 ⊢ ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
| 35 | 29, 30, 31, 34 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
| 36 | amgmw2d.4 | . . . 4 ⊢ (𝜑 → (𝑃 + 𝑄) = 1) | |
| 37 | 35, 36 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = 1) |
| 38 | 1, 3, 8, 17, 26, 37 | amgmwlem 49833 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) ≤ (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉))) |
| 39 | 9, 10 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) |
| 40 | 18, 19 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) |
| 41 | ofs2 14875 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) | |
| 42 | 39, 40, 41 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) |
| 43 | 42 | oveq2d 7362 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉)) |
| 44 | 1 | ringmgp 20155 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 45 | 27, 44 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
| 46 | 18 | rpred 12931 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 47 | 9, 46 | rpcxpcld 26667 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℝ+) |
| 48 | 47 | rpcnd 12933 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℂ) |
| 49 | 19 | rpred 12931 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 50 | 10, 49 | rpcxpcld 26667 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℝ+) |
| 51 | 50 | rpcnd 12933 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℂ) |
| 52 | 1, 32 | mgpbas 20061 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 53 | cnfldmul 21297 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 54 | 1, 53 | mgpplusg 20060 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 55 | 52, 54 | gsumws2 18747 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴↑𝑐𝑃) ∈ ℂ ∧ (𝐵↑𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 56 | 45, 48, 51, 55 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 57 | 43, 56 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 58 | ofs2 14875 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) | |
| 59 | 39, 40, 58 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) |
| 60 | 59 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉)) |
| 61 | 9, 18 | rpmulcld 12947 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℝ+) |
| 62 | 61 | rpcnd 12933 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℂ) |
| 63 | 10, 19 | rpmulcld 12947 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℝ+) |
| 64 | 63 | rpcnd 12933 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℂ) |
| 65 | 32, 33 | gsumws2 18747 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 66 | 29, 62, 64, 65 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 67 | 60, 66 | eqtrd 2766 | . 2 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 68 | 38, 57, 67 | 3brtr3d 5122 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Fincfn 8869 ℂcc 11001 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ≤ cle 11144 ℕcn 12122 2c2 12177 ℝ+crp 12887 ..^cfzo 13551 ♯chash 14234 Word cword 14417 〈“cs2 14745 Σg cgsu 17341 Mndcmnd 18639 mulGrpcmgp 20056 Ringcrg 20149 ℂfldccnfld 21289 ↑𝑐ccxp 26489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-word 14418 df-concat 14475 df-s1 14501 df-s2 14752 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-mulg 18978 df-subg 19033 df-ghm 19123 df-gim 19169 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrng 20459 df-subrg 20483 df-drng 20644 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-refld 21540 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 df-cxp 26491 |
| This theorem is referenced by: young2d 49836 |
| Copyright terms: Public domain | W3C validator |