| Mathbox for Kunhao Zheng |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > amgmw2d | Structured version Visualization version GIF version | ||
| Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44171). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| amgmw2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| amgmw2d.1 | ⊢ (𝜑 → 𝑃 ∈ ℝ+) |
| amgmw2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| amgmw2d.3 | ⊢ (𝜑 → 𝑄 ∈ ℝ+) |
| amgmw2d.4 | ⊢ (𝜑 → (𝑃 + 𝑄) = 1) |
| Ref | Expression |
|---|---|
| amgmw2d | ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 2 | fzofi 13899 | . . . 4 ⊢ (0..^2) ∈ Fin | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
| 4 | 2nn 12219 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 5 | lbfzo0 13620 | . . . . 5 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^2) |
| 7 | ne0i 4294 | . . . 4 ⊢ (0 ∈ (0..^2) → (0..^2) ≠ ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
| 9 | amgmw2d.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | amgmw2d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 11 | 9, 10 | s2cld 14796 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
| 12 | wrdf 14443 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
| 14 | s2len 14814 | . . . . . 6 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
| 15 | 14 | oveq2i 7364 | . . . . 5 ⊢ (0..^(♯‘〈“𝐴𝐵”〉)) = (0..^2) |
| 16 | 15 | feq2i 6648 | . . . 4 ⊢ (〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 17 | 13, 16 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 18 | amgmw2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ+) | |
| 19 | amgmw2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ+) | |
| 20 | 18, 19 | s2cld 14796 | . . . . 5 ⊢ (𝜑 → 〈“𝑃𝑄”〉 ∈ Word ℝ+) |
| 21 | wrdf 14443 | . . . . 5 ⊢ (〈“𝑃𝑄”〉 ∈ Word ℝ+ → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) |
| 23 | s2len 14814 | . . . . . 6 ⊢ (♯‘〈“𝑃𝑄”〉) = 2 | |
| 24 | 23 | oveq2i 7364 | . . . . 5 ⊢ (0..^(♯‘〈“𝑃𝑄”〉)) = (0..^2) |
| 25 | 24 | feq2i 6648 | . . . 4 ⊢ (〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+ ↔ 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
| 26 | 22, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
| 27 | cnring 21315 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
| 28 | ringmnd 20146 | . . . . . 6 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 29 | 27, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 30 | 18 | rpcnd 12957 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 31 | 19 | rpcnd 12957 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 32 | cnfldbas 21283 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 33 | cnfldadd 21285 | . . . . . 6 ⊢ + = (+g‘ℂfld) | |
| 34 | 32, 33 | gsumws2 18734 | . . . . 5 ⊢ ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
| 35 | 29, 30, 31, 34 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
| 36 | amgmw2d.4 | . . . 4 ⊢ (𝜑 → (𝑃 + 𝑄) = 1) | |
| 37 | 35, 36 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = 1) |
| 38 | 1, 3, 8, 17, 26, 37 | amgmwlem 49788 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) ≤ (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉))) |
| 39 | 9, 10 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) |
| 40 | 18, 19 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) |
| 41 | ofs2 14896 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) | |
| 42 | 39, 40, 41 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) |
| 43 | 42 | oveq2d 7369 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉)) |
| 44 | 1 | ringmgp 20142 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 45 | 27, 44 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
| 46 | 18 | rpred 12955 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 47 | 9, 46 | rpcxpcld 26658 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℝ+) |
| 48 | 47 | rpcnd 12957 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℂ) |
| 49 | 19 | rpred 12955 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 50 | 10, 49 | rpcxpcld 26658 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℝ+) |
| 51 | 50 | rpcnd 12957 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℂ) |
| 52 | 1, 32 | mgpbas 20048 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 53 | cnfldmul 21287 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 54 | 1, 53 | mgpplusg 20047 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 55 | 52, 54 | gsumws2 18734 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴↑𝑐𝑃) ∈ ℂ ∧ (𝐵↑𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 56 | 45, 48, 51, 55 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 57 | 43, 56 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
| 58 | ofs2 14896 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) | |
| 59 | 39, 40, 58 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) |
| 60 | 59 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉)) |
| 61 | 9, 18 | rpmulcld 12971 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℝ+) |
| 62 | 61 | rpcnd 12957 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℂ) |
| 63 | 10, 19 | rpmulcld 12971 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℝ+) |
| 64 | 63 | rpcnd 12957 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℂ) |
| 65 | 32, 33 | gsumws2 18734 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 66 | 29, 62, 64, 65 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 67 | 60, 66 | eqtrd 2764 | . 2 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| 68 | 38, 57, 67 | 3brtr3d 5126 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Fincfn 8879 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 ℕcn 12146 2c2 12201 ℝ+crp 12911 ..^cfzo 13575 ♯chash 14255 Word cword 14438 〈“cs2 14766 Σg cgsu 17362 Mndcmnd 18626 mulGrpcmgp 20043 Ringcrg 20136 ℂfldccnfld 21279 ↑𝑐ccxp 26480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrng 20449 df-subrg 20473 df-drng 20634 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-refld 21530 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-cxp 26482 |
| This theorem is referenced by: young2d 49791 |
| Copyright terms: Public domain | W3C validator |