Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmw2d Structured version   Visualization version   GIF version

Theorem amgmw2d 45332
Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 40904). (Contributed by Kunhao Zheng, 20-Jun-2021.)
Hypotheses
Ref Expression
amgmw2d.0 (𝜑𝐴 ∈ ℝ+)
amgmw2d.1 (𝜑𝑃 ∈ ℝ+)
amgmw2d.2 (𝜑𝐵 ∈ ℝ+)
amgmw2d.3 (𝜑𝑄 ∈ ℝ+)
amgmw2d.4 (𝜑 → (𝑃 + 𝑄) = 1)
Assertion
Ref Expression
amgmw2d (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))

Proof of Theorem amgmw2d
StepHypRef Expression
1 eqid 2798 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 13337 . . . 4 (0..^2) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^2) ∈ Fin)
4 2nn 11698 . . . . 5 2 ∈ ℕ
5 lbfzo0 13072 . . . . 5 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
64, 5mpbir 234 . . . 4 0 ∈ (0..^2)
7 ne0i 4250 . . . 4 (0 ∈ (0..^2) → (0..^2) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^2) ≠ ∅)
9 amgmw2d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgmw2d.2 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
119, 10s2cld 14224 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word ℝ+)
12 wrdf 13862 . . . . 5 (⟨“𝐴𝐵”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
1311, 12syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
14 s2len 14242 . . . . . 6 (♯‘⟨“𝐴𝐵”⟩) = 2
1514oveq2i 7146 . . . . 5 (0..^(♯‘⟨“𝐴𝐵”⟩)) = (0..^2)
1615feq2i 6479 . . . 4 (⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
1713, 16sylib 221 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
18 amgmw2d.1 . . . . . 6 (𝜑𝑃 ∈ ℝ+)
19 amgmw2d.3 . . . . . 6 (𝜑𝑄 ∈ ℝ+)
2018, 19s2cld 14224 . . . . 5 (𝜑 → ⟨“𝑃𝑄”⟩ ∈ Word ℝ+)
21 wrdf 13862 . . . . 5 (⟨“𝑃𝑄”⟩ ∈ Word ℝ+ → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
2220, 21syl 17 . . . 4 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
23 s2len 14242 . . . . . 6 (♯‘⟨“𝑃𝑄”⟩) = 2
2423oveq2i 7146 . . . . 5 (0..^(♯‘⟨“𝑃𝑄”⟩)) = (0..^2)
2524feq2i 6479 . . . 4 (⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+ ↔ ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
2622, 25sylib 221 . . 3 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
27 cnring 20113 . . . . . 6 fld ∈ Ring
28 ringmnd 19300 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2927, 28mp1i 13 . . . . 5 (𝜑 → ℂfld ∈ Mnd)
3018rpcnd 12421 . . . . 5 (𝜑𝑃 ∈ ℂ)
3119rpcnd 12421 . . . . 5 (𝜑𝑄 ∈ ℂ)
32 cnfldbas 20095 . . . . . 6 ℂ = (Base‘ℂfld)
33 cnfldadd 20096 . . . . . 6 + = (+g‘ℂfld)
3432, 33gsumws2 17999 . . . . 5 ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
3529, 30, 31, 34syl3anc 1368 . . . 4 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
36 amgmw2d.4 . . . 4 (𝜑 → (𝑃 + 𝑄) = 1)
3735, 36eqtrd 2833 . . 3 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = 1)
381, 3, 8, 17, 26, 37amgmwlem 45330 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) ≤ (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)))
399, 10jca 515 . . . . 5 (𝜑 → (𝐴 ∈ ℝ+𝐵 ∈ ℝ+))
4018, 19jca 515 . . . . 5 (𝜑 → (𝑃 ∈ ℝ+𝑄 ∈ ℝ+))
41 ofs2 14322 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4239, 40, 41syl2anc 587 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4342oveq2d 7151 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) = ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩))
441ringmgp 19296 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
4527, 44mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
4618rpred 12419 . . . . . 6 (𝜑𝑃 ∈ ℝ)
479, 46rpcxpcld 25323 . . . . 5 (𝜑 → (𝐴𝑐𝑃) ∈ ℝ+)
4847rpcnd 12421 . . . 4 (𝜑 → (𝐴𝑐𝑃) ∈ ℂ)
4919rpred 12419 . . . . . 6 (𝜑𝑄 ∈ ℝ)
5010, 49rpcxpcld 25323 . . . . 5 (𝜑 → (𝐵𝑐𝑄) ∈ ℝ+)
5150rpcnd 12421 . . . 4 (𝜑 → (𝐵𝑐𝑄) ∈ ℂ)
521, 32mgpbas 19238 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
53 cnfldmul 20097 . . . . . 6 · = (.r‘ℂfld)
541, 53mgpplusg 19236 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
5552, 54gsumws2 17999 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴𝑐𝑃) ∈ ℂ ∧ (𝐵𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5645, 48, 51, 55syl3anc 1368 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5743, 56eqtrd 2833 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
58 ofs2 14322 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
5939, 40, 58syl2anc 587 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
6059oveq2d 7151 . . 3 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)) = (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩))
619, 18rpmulcld 12435 . . . . 5 (𝜑 → (𝐴 · 𝑃) ∈ ℝ+)
6261rpcnd 12421 . . . 4 (𝜑 → (𝐴 · 𝑃) ∈ ℂ)
6310, 19rpmulcld 12435 . . . . 5 (𝜑 → (𝐵 · 𝑄) ∈ ℝ+)
6463rpcnd 12421 . . . 4 (𝜑 → (𝐵 · 𝑄) ∈ ℂ)
6532, 33gsumws2 17999 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6629, 62, 64, 65syl3anc 1368 . . 3 (𝜑 → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6760, 66eqtrd 2833 . 2 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6838, 57, 673brtr3d 5061 1 (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  c0 4243   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cn 11625  2c2 11680  +crp 12377  ..^cfzo 13028  chash 13686  Word cword 13857  ⟨“cs2 14194   Σg cgsu 16706  Mndcmnd 17903  mulGrpcmgp 19232  Ringcrg 19290  fldccnfld 20091  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-refld 20294  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  young2d  45333
  Copyright terms: Public domain W3C validator