Mathbox for Kunhao Zheng |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amgmw2d | Structured version Visualization version GIF version |
Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 41768). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
Ref | Expression |
---|---|
amgmw2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
amgmw2d.1 | ⊢ (𝜑 → 𝑃 ∈ ℝ+) |
amgmw2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
amgmw2d.3 | ⊢ (𝜑 → 𝑄 ∈ ℝ+) |
amgmw2d.4 | ⊢ (𝜑 → (𝑃 + 𝑄) = 1) |
Ref | Expression |
---|---|
amgmw2d | ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
2 | fzofi 13682 | . . . 4 ⊢ (0..^2) ∈ Fin | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
4 | 2nn 12034 | . . . . 5 ⊢ 2 ∈ ℕ | |
5 | lbfzo0 13415 | . . . . 5 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
6 | 4, 5 | mpbir 230 | . . . 4 ⊢ 0 ∈ (0..^2) |
7 | ne0i 4269 | . . . 4 ⊢ (0 ∈ (0..^2) → (0..^2) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
9 | amgmw2d.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | amgmw2d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
11 | 9, 10 | s2cld 14572 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
12 | wrdf 14210 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
14 | s2len 14590 | . . . . . 6 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
15 | 14 | oveq2i 7279 | . . . . 5 ⊢ (0..^(♯‘〈“𝐴𝐵”〉)) = (0..^2) |
16 | 15 | feq2i 6585 | . . . 4 ⊢ (〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
17 | 13, 16 | sylib 217 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
18 | amgmw2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ+) | |
19 | amgmw2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ+) | |
20 | 18, 19 | s2cld 14572 | . . . . 5 ⊢ (𝜑 → 〈“𝑃𝑄”〉 ∈ Word ℝ+) |
21 | wrdf 14210 | . . . . 5 ⊢ (〈“𝑃𝑄”〉 ∈ Word ℝ+ → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) |
23 | s2len 14590 | . . . . . 6 ⊢ (♯‘〈“𝑃𝑄”〉) = 2 | |
24 | 23 | oveq2i 7279 | . . . . 5 ⊢ (0..^(♯‘〈“𝑃𝑄”〉)) = (0..^2) |
25 | 24 | feq2i 6585 | . . . 4 ⊢ (〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+ ↔ 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
26 | 22, 25 | sylib 217 | . . 3 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
27 | cnring 20608 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
28 | ringmnd 19781 | . . . . . 6 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
29 | 27, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Mnd) |
30 | 18 | rpcnd 12762 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
31 | 19 | rpcnd 12762 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
32 | cnfldbas 20589 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
33 | cnfldadd 20590 | . . . . . 6 ⊢ + = (+g‘ℂfld) | |
34 | 32, 33 | gsumws2 18469 | . . . . 5 ⊢ ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
35 | 29, 30, 31, 34 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
36 | amgmw2d.4 | . . . 4 ⊢ (𝜑 → (𝑃 + 𝑄) = 1) | |
37 | 35, 36 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = 1) |
38 | 1, 3, 8, 17, 26, 37 | amgmwlem 46462 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) ≤ (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉))) |
39 | 9, 10 | jca 512 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) |
40 | 18, 19 | jca 512 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) |
41 | ofs2 14670 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) | |
42 | 39, 40, 41 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) |
43 | 42 | oveq2d 7284 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉)) |
44 | 1 | ringmgp 19777 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
45 | 27, 44 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
46 | 18 | rpred 12760 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
47 | 9, 46 | rpcxpcld 25875 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℝ+) |
48 | 47 | rpcnd 12762 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℂ) |
49 | 19 | rpred 12760 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
50 | 10, 49 | rpcxpcld 25875 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℝ+) |
51 | 50 | rpcnd 12762 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℂ) |
52 | 1, 32 | mgpbas 19714 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
53 | cnfldmul 20591 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
54 | 1, 53 | mgpplusg 19712 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
55 | 52, 54 | gsumws2 18469 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴↑𝑐𝑃) ∈ ℂ ∧ (𝐵↑𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
56 | 45, 48, 51, 55 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
57 | 43, 56 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
58 | ofs2 14670 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) | |
59 | 39, 40, 58 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) |
60 | 59 | oveq2d 7284 | . . 3 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉)) |
61 | 9, 18 | rpmulcld 12776 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℝ+) |
62 | 61 | rpcnd 12762 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℂ) |
63 | 10, 19 | rpmulcld 12776 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℝ+) |
64 | 63 | rpcnd 12762 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℂ) |
65 | 32, 33 | gsumws2 18469 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
66 | 29, 62, 64, 65 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
67 | 60, 66 | eqtrd 2778 | . 2 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
68 | 38, 57, 67 | 3brtr3d 5105 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4257 class class class wbr 5074 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 ∘f cof 7522 Fincfn 8721 ℂcc 10857 0cc0 10859 1c1 10860 + caddc 10862 · cmul 10864 ≤ cle 10998 ℕcn 11961 2c2 12016 ℝ+crp 12718 ..^cfzo 13370 ♯chash 14032 Word cword 14205 〈“cs2 14542 Σg cgsu 17139 Mndcmnd 18373 mulGrpcmgp 19708 Ringcrg 19771 ℂfldccnfld 20585 ↑𝑐ccxp 25699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-inf2 9387 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 ax-addf 10938 ax-mulf 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-tpos 8030 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-2o 8286 df-er 8486 df-map 8605 df-pm 8606 df-ixp 8674 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-fi 9158 df-sup 9189 df-inf 9190 df-oi 9257 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-ioo 13071 df-ioc 13072 df-ico 13073 df-icc 13074 df-fz 13228 df-fzo 13371 df-fl 13500 df-mod 13578 df-seq 13710 df-exp 13771 df-fac 13976 df-bc 14005 df-hash 14033 df-word 14206 df-concat 14262 df-s1 14289 df-s2 14549 df-shft 14766 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-limsup 15168 df-clim 15185 df-rlim 15186 df-sum 15386 df-ef 15765 df-sin 15767 df-cos 15768 df-pi 15770 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-mulr 16964 df-starv 16965 df-sca 16966 df-vsca 16967 df-ip 16968 df-tset 16969 df-ple 16970 df-ds 16972 df-unif 16973 df-hom 16974 df-cco 16975 df-rest 17121 df-topn 17122 df-0g 17140 df-gsum 17141 df-topgen 17142 df-pt 17143 df-prds 17146 df-xrs 17201 df-qtop 17206 df-imas 17207 df-xps 17209 df-mre 17283 df-mrc 17284 df-acs 17286 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-mhm 18418 df-submnd 18419 df-grp 18568 df-minusg 18569 df-mulg 18689 df-subg 18740 df-ghm 18820 df-gim 18863 df-cntz 18911 df-cmn 19376 df-abl 19377 df-mgp 19709 df-ur 19726 df-ring 19773 df-cring 19774 df-oppr 19850 df-dvdsr 19871 df-unit 19872 df-invr 19902 df-dvr 19913 df-drng 19981 df-subrg 20010 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-fbas 20582 df-fg 20583 df-cnfld 20586 df-refld 20798 df-top 22031 df-topon 22048 df-topsp 22070 df-bases 22084 df-cld 22158 df-ntr 22159 df-cls 22160 df-nei 22237 df-lp 22275 df-perf 22276 df-cn 22366 df-cnp 22367 df-haus 22454 df-cmp 22526 df-tx 22701 df-hmeo 22894 df-fil 22985 df-fm 23077 df-flim 23078 df-flf 23079 df-xms 23461 df-ms 23462 df-tms 23463 df-cncf 24029 df-limc 25018 df-dv 25019 df-log 25700 df-cxp 25701 |
This theorem is referenced by: young2d 46465 |
Copyright terms: Public domain | W3C validator |