![]() |
Mathbox for Kunhao Zheng |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > amgmw2d | Structured version Visualization version GIF version |
Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44160). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
Ref | Expression |
---|---|
amgmw2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
amgmw2d.1 | ⊢ (𝜑 → 𝑃 ∈ ℝ+) |
amgmw2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
amgmw2d.3 | ⊢ (𝜑 → 𝑄 ∈ ℝ+) |
amgmw2d.4 | ⊢ (𝜑 → (𝑃 + 𝑄) = 1) |
Ref | Expression |
---|---|
amgmw2d | ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
2 | fzofi 14025 | . . . 4 ⊢ (0..^2) ∈ Fin | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
4 | 2nn 12366 | . . . . 5 ⊢ 2 ∈ ℕ | |
5 | lbfzo0 13756 | . . . . 5 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
6 | 4, 5 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^2) |
7 | ne0i 4364 | . . . 4 ⊢ (0 ∈ (0..^2) → (0..^2) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
9 | amgmw2d.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | amgmw2d.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
11 | 9, 10 | s2cld 14920 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
12 | wrdf 14567 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
14 | s2len 14938 | . . . . . 6 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
15 | 14 | oveq2i 7459 | . . . . 5 ⊢ (0..^(♯‘〈“𝐴𝐵”〉)) = (0..^2) |
16 | 15 | feq2i 6739 | . . . 4 ⊢ (〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
17 | 13, 16 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
18 | amgmw2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ+) | |
19 | amgmw2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ+) | |
20 | 18, 19 | s2cld 14920 | . . . . 5 ⊢ (𝜑 → 〈“𝑃𝑄”〉 ∈ Word ℝ+) |
21 | wrdf 14567 | . . . . 5 ⊢ (〈“𝑃𝑄”〉 ∈ Word ℝ+ → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+) |
23 | s2len 14938 | . . . . . 6 ⊢ (♯‘〈“𝑃𝑄”〉) = 2 | |
24 | 23 | oveq2i 7459 | . . . . 5 ⊢ (0..^(♯‘〈“𝑃𝑄”〉)) = (0..^2) |
25 | 24 | feq2i 6739 | . . . 4 ⊢ (〈“𝑃𝑄”〉:(0..^(♯‘〈“𝑃𝑄”〉))⟶ℝ+ ↔ 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
26 | 22, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈“𝑃𝑄”〉:(0..^2)⟶ℝ+) |
27 | cnring 21426 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
28 | ringmnd 20270 | . . . . . 6 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
29 | 27, 28 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Mnd) |
30 | 18 | rpcnd 13101 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
31 | 19 | rpcnd 13101 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
32 | cnfldbas 21391 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
33 | cnfldadd 21393 | . . . . . 6 ⊢ + = (+g‘ℂfld) | |
34 | 32, 33 | gsumws2 18877 | . . . . 5 ⊢ ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
35 | 29, 30, 31, 34 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = (𝑃 + 𝑄)) |
36 | amgmw2d.4 | . . . 4 ⊢ (𝜑 → (𝑃 + 𝑄) = 1) | |
37 | 35, 36 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝑃𝑄”〉) = 1) |
38 | 1, 3, 8, 17, 26, 37 | amgmwlem 48896 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) ≤ (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉))) |
39 | 9, 10 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)) |
40 | 18, 19 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) |
41 | ofs2 15020 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) | |
42 | 39, 40, 41 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉) = 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) |
43 | 42 | oveq2d 7464 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉)) |
44 | 1 | ringmgp 20266 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
45 | 27, 44 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
46 | 18 | rpred 13099 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
47 | 9, 46 | rpcxpcld 26793 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℝ+) |
48 | 47 | rpcnd 13101 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℂ) |
49 | 19 | rpred 13099 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
50 | 10, 49 | rpcxpcld 26793 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℝ+) |
51 | 50 | rpcnd 13101 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℂ) |
52 | 1, 32 | mgpbas 20167 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
53 | cnfldmul 21395 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
54 | 1, 53 | mgpplusg 20165 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
55 | 52, 54 | gsumws2 18877 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴↑𝑐𝑃) ∈ ℂ ∧ (𝐵↑𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
56 | 45, 48, 51, 55 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“(𝐴↑𝑐𝑃)(𝐵↑𝑐𝑄)”〉) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
57 | 43, 56 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg (〈“𝐴𝐵”〉 ∘f ↑𝑐〈“𝑃𝑄”〉)) = ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄))) |
58 | ofs2 15020 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+ ∧ 𝑄 ∈ ℝ+)) → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) | |
59 | 39, 40, 58 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉) = 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) |
60 | 59 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉)) |
61 | 9, 18 | rpmulcld 13115 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℝ+) |
62 | 61 | rpcnd 13101 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑃) ∈ ℂ) |
63 | 10, 19 | rpmulcld 13115 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℝ+) |
64 | 63 | rpcnd 13101 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑄) ∈ ℂ) |
65 | 32, 33 | gsumws2 18877 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
66 | 29, 62, 64, 65 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“(𝐴 · 𝑃)(𝐵 · 𝑄)”〉) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
67 | 60, 66 | eqtrd 2780 | . 2 ⊢ (𝜑 → (ℂfld Σg (〈“𝐴𝐵”〉 ∘f · 〈“𝑃𝑄”〉)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
68 | 38, 57, 67 | 3brtr3d 5197 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Fincfn 9003 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 ℕcn 12293 2c2 12348 ℝ+crp 13057 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs2 14890 Σg cgsu 17500 Mndcmnd 18772 mulGrpcmgp 20161 Ringcrg 20260 ℂfldccnfld 21387 ↑𝑐ccxp 26615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-subrng 20572 df-subrg 20597 df-drng 20753 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-refld 21646 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-cxp 26617 |
This theorem is referenced by: young2d 48899 |
Copyright terms: Public domain | W3C validator |