Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmw2d Structured version   Visualization version   GIF version

Theorem amgmw2d 49790
Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44171). (Contributed by Kunhao Zheng, 20-Jun-2021.)
Hypotheses
Ref Expression
amgmw2d.0 (𝜑𝐴 ∈ ℝ+)
amgmw2d.1 (𝜑𝑃 ∈ ℝ+)
amgmw2d.2 (𝜑𝐵 ∈ ℝ+)
amgmw2d.3 (𝜑𝑄 ∈ ℝ+)
amgmw2d.4 (𝜑 → (𝑃 + 𝑄) = 1)
Assertion
Ref Expression
amgmw2d (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))

Proof of Theorem amgmw2d
StepHypRef Expression
1 eqid 2729 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 13899 . . . 4 (0..^2) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^2) ∈ Fin)
4 2nn 12219 . . . . 5 2 ∈ ℕ
5 lbfzo0 13620 . . . . 5 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
64, 5mpbir 231 . . . 4 0 ∈ (0..^2)
7 ne0i 4294 . . . 4 (0 ∈ (0..^2) → (0..^2) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^2) ≠ ∅)
9 amgmw2d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgmw2d.2 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
119, 10s2cld 14796 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word ℝ+)
12 wrdf 14443 . . . . 5 (⟨“𝐴𝐵”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
1311, 12syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
14 s2len 14814 . . . . . 6 (♯‘⟨“𝐴𝐵”⟩) = 2
1514oveq2i 7364 . . . . 5 (0..^(♯‘⟨“𝐴𝐵”⟩)) = (0..^2)
1615feq2i 6648 . . . 4 (⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
1713, 16sylib 218 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
18 amgmw2d.1 . . . . . 6 (𝜑𝑃 ∈ ℝ+)
19 amgmw2d.3 . . . . . 6 (𝜑𝑄 ∈ ℝ+)
2018, 19s2cld 14796 . . . . 5 (𝜑 → ⟨“𝑃𝑄”⟩ ∈ Word ℝ+)
21 wrdf 14443 . . . . 5 (⟨“𝑃𝑄”⟩ ∈ Word ℝ+ → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
2220, 21syl 17 . . . 4 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
23 s2len 14814 . . . . . 6 (♯‘⟨“𝑃𝑄”⟩) = 2
2423oveq2i 7364 . . . . 5 (0..^(♯‘⟨“𝑃𝑄”⟩)) = (0..^2)
2524feq2i 6648 . . . 4 (⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+ ↔ ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
2622, 25sylib 218 . . 3 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
27 cnring 21315 . . . . . 6 fld ∈ Ring
28 ringmnd 20146 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2927, 28mp1i 13 . . . . 5 (𝜑 → ℂfld ∈ Mnd)
3018rpcnd 12957 . . . . 5 (𝜑𝑃 ∈ ℂ)
3119rpcnd 12957 . . . . 5 (𝜑𝑄 ∈ ℂ)
32 cnfldbas 21283 . . . . . 6 ℂ = (Base‘ℂfld)
33 cnfldadd 21285 . . . . . 6 + = (+g‘ℂfld)
3432, 33gsumws2 18734 . . . . 5 ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
3529, 30, 31, 34syl3anc 1373 . . . 4 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
36 amgmw2d.4 . . . 4 (𝜑 → (𝑃 + 𝑄) = 1)
3735, 36eqtrd 2764 . . 3 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = 1)
381, 3, 8, 17, 26, 37amgmwlem 49788 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) ≤ (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)))
399, 10jca 511 . . . . 5 (𝜑 → (𝐴 ∈ ℝ+𝐵 ∈ ℝ+))
4018, 19jca 511 . . . . 5 (𝜑 → (𝑃 ∈ ℝ+𝑄 ∈ ℝ+))
41 ofs2 14896 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4239, 40, 41syl2anc 584 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4342oveq2d 7369 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) = ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩))
441ringmgp 20142 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
4527, 44mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
4618rpred 12955 . . . . . 6 (𝜑𝑃 ∈ ℝ)
479, 46rpcxpcld 26658 . . . . 5 (𝜑 → (𝐴𝑐𝑃) ∈ ℝ+)
4847rpcnd 12957 . . . 4 (𝜑 → (𝐴𝑐𝑃) ∈ ℂ)
4919rpred 12955 . . . . . 6 (𝜑𝑄 ∈ ℝ)
5010, 49rpcxpcld 26658 . . . . 5 (𝜑 → (𝐵𝑐𝑄) ∈ ℝ+)
5150rpcnd 12957 . . . 4 (𝜑 → (𝐵𝑐𝑄) ∈ ℂ)
521, 32mgpbas 20048 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
53 cnfldmul 21287 . . . . . 6 · = (.r‘ℂfld)
541, 53mgpplusg 20047 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
5552, 54gsumws2 18734 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴𝑐𝑃) ∈ ℂ ∧ (𝐵𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5645, 48, 51, 55syl3anc 1373 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5743, 56eqtrd 2764 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘f𝑐⟨“𝑃𝑄”⟩)) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
58 ofs2 14896 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
5939, 40, 58syl2anc 584 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
6059oveq2d 7369 . . 3 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)) = (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩))
619, 18rpmulcld 12971 . . . . 5 (𝜑 → (𝐴 · 𝑃) ∈ ℝ+)
6261rpcnd 12957 . . . 4 (𝜑 → (𝐴 · 𝑃) ∈ ℂ)
6310, 19rpmulcld 12971 . . . . 5 (𝜑 → (𝐵 · 𝑄) ∈ ℝ+)
6463rpcnd 12957 . . . 4 (𝜑 → (𝐵 · 𝑄) ∈ ℂ)
6532, 33gsumws2 18734 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6629, 62, 64, 65syl3anc 1373 . . 3 (𝜑 → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6760, 66eqtrd 2764 . 2 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘f · ⟨“𝑃𝑄”⟩)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6838, 57, 673brtr3d 5126 1 (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4286   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cn 12146  2c2 12201  +crp 12911  ..^cfzo 13575  chash 14255  Word cword 14438  ⟨“cs2 14766   Σg cgsu 17362  Mndcmnd 18626  mulGrpcmgp 20043  Ringcrg 20136  fldccnfld 21279  𝑐ccxp 26480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-subg 19020  df-ghm 19110  df-gim 19156  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-subrng 20449  df-subrg 20473  df-drng 20634  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-refld 21530  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482
This theorem is referenced by:  young2d  49791
  Copyright terms: Public domain W3C validator