| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqf2 | Structured version Visualization version GIF version | ||
| Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqcl2.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
| seqcl2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
| seqf2.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| seqf2.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| seqf2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
| Ref | Expression |
|---|---|
| seqf2 | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf2.4 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | seqfn 13954 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
| 4 | seqcl2.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑀) ∈ 𝐶) |
| 6 | seqcl2.2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
| 7 | 6 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 9 | elfzuz 13457 | . . . . . . 7 ⊢ (𝑥 ∈ ((𝑀 + 1)...𝑘) → 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) | |
| 10 | seqf2.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
| 11 | 9, 10 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹‘𝑥) ∈ 𝐷) |
| 12 | 11 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹‘𝑥) ∈ 𝐷) |
| 13 | 5, 7, 8, 12 | seqcl2 13961 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶) |
| 14 | 13 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶) |
| 15 | ffnfv 7073 | . . 3 ⊢ (seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶 ↔ (seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)) | |
| 16 | 3, 14, 15 | sylanbrc 583 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
| 17 | seqf2.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 18 | 17 | feq2i 6662 | . 2 ⊢ (seq𝑀( + , 𝐹):𝑍⟶𝐶 ↔ seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
| 19 | 16, 18 | sylibr 234 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1c1 11045 + caddc 11047 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 seqcseq 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 |
| This theorem is referenced by: seqf 13964 ruclem6 16179 sadcf 16399 smupf 16424 sseqfv2 34358 |
| Copyright terms: Public domain | W3C validator |