MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf2 Structured version   Visualization version   GIF version

Theorem seqf2 13050
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqf2.3 𝑍 = (ℤ𝑀)
seqf2.4 (𝜑𝑀 ∈ ℤ)
seqf2.5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqf2 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem seqf2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 seqf2.4 . . . 4 (𝜑𝑀 ∈ ℤ)
2 seqfn 13043 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
4 seqcl2.1 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
54adantr 468 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑀) ∈ 𝐶)
6 seqcl2.2 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
76adantlr 697 . . . . 5 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
8 simpr 473 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
9 elfzuz 12568 . . . . . . 7 (𝑥 ∈ ((𝑀 + 1)...𝑘) → 𝑥 ∈ (ℤ‘(𝑀 + 1)))
10 seqf2.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
119, 10sylan2 582 . . . . . 6 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹𝑥) ∈ 𝐷)
1211adantlr 697 . . . . 5 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹𝑥) ∈ 𝐷)
135, 7, 8, 12seqcl2 13049 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)
1413ralrimiva 3165 . . 3 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)
15 ffnfv 6617 . . 3 (seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶 ↔ (seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶))
163, 14, 15sylanbrc 574 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
17 seqf2.3 . . 3 𝑍 = (ℤ𝑀)
1817feq2i 6255 . 2 (seq𝑀( + , 𝐹):𝑍𝐶 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
1916, 18sylibr 225 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wral 3107   Fn wfn 6103  wf 6104  cfv 6108  (class class class)co 6881  1c1 10229   + caddc 10231  cz 11650  cuz 11911  ...cfz 12556  seqcseq 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-er 7986  df-en 8200  df-dom 8201  df-sdom 8202  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-n0 11567  df-z 11651  df-uz 11912  df-fz 12557  df-seq 13032
This theorem is referenced by:  seqf  13052  ruclem6  15191  sadcf  15401  smupf  15426  sseqfv2  30791
  Copyright terms: Public domain W3C validator