MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf2 Structured version   Visualization version   GIF version

Theorem seqf2 13239
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqf2.3 𝑍 = (ℤ𝑀)
seqf2.4 (𝜑𝑀 ∈ ℤ)
seqf2.5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqf2 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem seqf2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 seqf2.4 . . . 4 (𝜑𝑀 ∈ ℤ)
2 seqfn 13231 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
4 seqcl2.1 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
54adantr 481 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑀) ∈ 𝐶)
6 seqcl2.2 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
76adantlr 711 . . . . 5 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
8 simpr 485 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
9 elfzuz 12754 . . . . . . 7 (𝑥 ∈ ((𝑀 + 1)...𝑘) → 𝑥 ∈ (ℤ‘(𝑀 + 1)))
10 seqf2.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
119, 10sylan2 592 . . . . . 6 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹𝑥) ∈ 𝐷)
1211adantlr 711 . . . . 5 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹𝑥) ∈ 𝐷)
135, 7, 8, 12seqcl2 13238 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)
1413ralrimiva 3149 . . 3 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)
15 ffnfv 6745 . . 3 (seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶 ↔ (seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶))
163, 14, 15sylanbrc 583 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
17 seqf2.3 . . 3 𝑍 = (ℤ𝑀)
1817feq2i 6374 . 2 (seq𝑀( + , 𝐹):𝑍𝐶 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
1916, 18sylibr 235 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  1c1 10384   + caddc 10386  cz 11829  cuz 12093  ...cfz 12742  seqcseq 13219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-seq 13220
This theorem is referenced by:  seqf  13241  ruclem6  15421  sadcf  15635  smupf  15660  sseqfv2  31269
  Copyright terms: Public domain W3C validator