| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > amgm3d | Structured version Visualization version GIF version | ||
| Description: Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
| Ref | Expression |
|---|---|
| amgm3d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| amgm3d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| amgm3d.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| amgm3d | ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 2 | fzofi 13939 | . . . 4 ⊢ (0..^3) ∈ Fin | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^3) ∈ Fin) |
| 4 | 3nn 12265 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 5 | lbfzo0 13660 | . . . . 5 ⊢ (0 ∈ (0..^3) ↔ 3 ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . 4 ⊢ 0 ∈ (0..^3) |
| 7 | ne0i 4304 | . . . 4 ⊢ (0 ∈ (0..^3) → (0..^3) ≠ ∅) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^3) ≠ ∅) |
| 9 | amgm3d.0 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | amgm3d.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 11 | amgm3d.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 12 | 9, 10, 11 | s3cld 14838 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+) |
| 13 | wrdf 14483 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶ℝ+) | |
| 14 | s3len 14860 | . . . . . . . . 9 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
| 15 | df-3 12250 | . . . . . . . . 9 ⊢ 3 = (2 + 1) | |
| 16 | 14, 15 | eqtri 2752 | . . . . . . . 8 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1) |
| 17 | 16 | oveq2i 7398 | . . . . . . 7 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^(2 + 1)) |
| 18 | 17 | feq2i 6680 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶ℝ+ ↔ 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
| 19 | 13, 18 | sylib 218 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
| 20 | 15 | oveq2i 7398 | . . . . . 6 ⊢ (0..^3) = (0..^(2 + 1)) |
| 21 | 20 | feq2i 6680 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+ ↔ 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
| 22 | 19, 21 | sylibr 234 | . . . 4 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+) |
| 23 | 12, 22 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+) |
| 24 | 1, 3, 8, 23 | amgmlem 26900 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉)↑𝑐(1 / (♯‘(0..^3)))) ≤ ((ℂfld Σg 〈“𝐴𝐵𝐶”〉) / (♯‘(0..^3)))) |
| 25 | cnring 21302 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 26 | 1 | ringmgp 20148 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 27 | 25, 26 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
| 28 | 9 | rpcnd 12997 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 29 | 10 | rpcnd 12997 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 30 | 11 | rpcnd 12997 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 31 | 28, 29, 30 | jca32 515 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) |
| 32 | cnfldbas 21268 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 33 | 1, 32 | mgpbas 20054 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 34 | cnfldmul 21272 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 35 | 1, 34 | mgpplusg 20053 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 36 | 33, 35 | gsumws3 44185 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 · (𝐵 · 𝐶))) |
| 37 | 27, 31, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 · (𝐵 · 𝐶))) |
| 38 | 3nn0 12460 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 39 | hashfzo0 14395 | . . . . 5 ⊢ (3 ∈ ℕ0 → (♯‘(0..^3)) = 3) | |
| 40 | 38, 39 | mp1i 13 | . . . 4 ⊢ (𝜑 → (♯‘(0..^3)) = 3) |
| 41 | 40 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (1 / (♯‘(0..^3))) = (1 / 3)) |
| 42 | 37, 41 | oveq12d 7405 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉)↑𝑐(1 / (♯‘(0..^3)))) = ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3))) |
| 43 | ringmnd 20152 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 44 | 25, 43 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 45 | cnfldadd 21270 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 46 | 32, 45 | gsumws3 44185 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → (ℂfld Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 + (𝐵 + 𝐶))) |
| 47 | 44, 31, 46 | syl2anc 584 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 + (𝐵 + 𝐶))) |
| 48 | 47, 40 | oveq12d 7405 | . 2 ⊢ (𝜑 → ((ℂfld Σg 〈“𝐴𝐵𝐶”〉) / (♯‘(0..^3))) = ((𝐴 + (𝐵 + 𝐶)) / 3)) |
| 49 | 24, 42, 48 | 3brtr3d 5138 | 1 ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 / cdiv 11835 ℕcn 12186 2c2 12241 3c3 12242 ℕ0cn0 12442 ℝ+crp 12951 ..^cfzo 13615 ♯chash 14295 Word cword 14478 〈“cs3 14808 Σg cgsu 17403 Mndcmnd 18661 mulGrpcmgp 20049 Ringcrg 20142 ℂfldccnfld 21264 ↑𝑐ccxp 26464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-refld 21514 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-cxp 26466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |