Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgm3d Structured version   Visualization version   GIF version

Theorem amgm3d 44188
Description: Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.)
Hypotheses
Ref Expression
amgm3d.0 (𝜑𝐴 ∈ ℝ+)
amgm3d.1 (𝜑𝐵 ∈ ℝ+)
amgm3d.2 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
amgm3d (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3))

Proof of Theorem amgm3d
StepHypRef Expression
1 eqid 2729 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 13939 . . . 4 (0..^3) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
4 3nn 12265 . . . . 5 3 ∈ ℕ
5 lbfzo0 13660 . . . . 5 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
64, 5mpbir 231 . . . 4 0 ∈ (0..^3)
7 ne0i 4304 . . . 4 (0 ∈ (0..^3) → (0..^3) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^3) ≠ ∅)
9 amgm3d.0 . . . . 5 (𝜑𝐴 ∈ ℝ+)
10 amgm3d.1 . . . . 5 (𝜑𝐵 ∈ ℝ+)
11 amgm3d.2 . . . . 5 (𝜑𝐶 ∈ ℝ+)
129, 10, 11s3cld 14838 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word ℝ+)
13 wrdf 14483 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶ℝ+)
14 s3len 14860 . . . . . . . . 9 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
15 df-3 12250 . . . . . . . . 9 3 = (2 + 1)
1614, 15eqtri 2752 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)
1716oveq2i 7398 . . . . . . 7 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^(2 + 1))
1817feq2i 6680 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵𝐶”⟩:(0..^(2 + 1))⟶ℝ+)
1913, 18sylib 218 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶”⟩:(0..^(2 + 1))⟶ℝ+)
2015oveq2i 7398 . . . . . 6 (0..^3) = (0..^(2 + 1))
2120feq2i 6680 . . . . 5 (⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶ℝ+ ↔ ⟨“𝐴𝐵𝐶”⟩:(0..^(2 + 1))⟶ℝ+)
2219, 21sylibr 234 . . . 4 (⟨“𝐴𝐵𝐶”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶ℝ+)
2312, 22syl 17 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^3)⟶ℝ+)
241, 3, 8, 23amgmlem 26900 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶”⟩)↑𝑐(1 / (♯‘(0..^3)))) ≤ ((ℂfld Σg ⟨“𝐴𝐵𝐶”⟩) / (♯‘(0..^3))))
25 cnring 21302 . . . . 5 fld ∈ Ring
261ringmgp 20148 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2725, 26mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
289rpcnd 12997 . . . . 5 (𝜑𝐴 ∈ ℂ)
2910rpcnd 12997 . . . . 5 (𝜑𝐵 ∈ ℂ)
3011rpcnd 12997 . . . . 5 (𝜑𝐶 ∈ ℂ)
3128, 29, 30jca32 515 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)))
32 cnfldbas 21268 . . . . . 6 ℂ = (Base‘ℂfld)
331, 32mgpbas 20054 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
34 cnfldmul 21272 . . . . . 6 · = (.r‘ℂfld)
351, 34mgpplusg 20053 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
3633, 35gsumws3 44185 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶”⟩) = (𝐴 · (𝐵 · 𝐶)))
3727, 31, 36syl2anc 584 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶”⟩) = (𝐴 · (𝐵 · 𝐶)))
38 3nn0 12460 . . . . 5 3 ∈ ℕ0
39 hashfzo0 14395 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
4038, 39mp1i 13 . . . 4 (𝜑 → (♯‘(0..^3)) = 3)
4140oveq2d 7403 . . 3 (𝜑 → (1 / (♯‘(0..^3))) = (1 / 3))
4237, 41oveq12d 7405 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶”⟩)↑𝑐(1 / (♯‘(0..^3)))) = ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)))
43 ringmnd 20152 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4425, 43mp1i 13 . . . 4 (𝜑 → ℂfld ∈ Mnd)
45 cnfldadd 21270 . . . . 5 + = (+g‘ℂfld)
4632, 45gsumws3 44185 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → (ℂfld Σg ⟨“𝐴𝐵𝐶”⟩) = (𝐴 + (𝐵 + 𝐶)))
4744, 31, 46syl2anc 584 . . 3 (𝜑 → (ℂfld Σg ⟨“𝐴𝐵𝐶”⟩) = (𝐴 + (𝐵 + 𝐶)))
4847, 40oveq12d 7405 . 2 (𝜑 → ((ℂfld Σg ⟨“𝐴𝐵𝐶”⟩) / (♯‘(0..^3))) = ((𝐴 + (𝐵 + 𝐶)) / 3))
4924, 42, 483brtr3d 5138 1 (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  +crp 12951  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs3 14808   Σg cgsu 17403  Mndcmnd 18661  mulGrpcmgp 20049  Ringcrg 20142  fldccnfld 21264  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-refld 21514  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator