Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amgm3d | Structured version Visualization version GIF version |
Description: Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
Ref | Expression |
---|---|
amgm3d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
amgm3d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
amgm3d.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
amgm3d | ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
2 | fzofi 13622 | . . . 4 ⊢ (0..^3) ∈ Fin | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^3) ∈ Fin) |
4 | 3nn 11982 | . . . . 5 ⊢ 3 ∈ ℕ | |
5 | lbfzo0 13355 | . . . . 5 ⊢ (0 ∈ (0..^3) ↔ 3 ∈ ℕ) | |
6 | 4, 5 | mpbir 230 | . . . 4 ⊢ 0 ∈ (0..^3) |
7 | ne0i 4265 | . . . 4 ⊢ (0 ∈ (0..^3) → (0..^3) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^3) ≠ ∅) |
9 | amgm3d.0 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | amgm3d.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
11 | amgm3d.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
12 | 9, 10, 11 | s3cld 14513 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+) |
13 | wrdf 14150 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶ℝ+) | |
14 | s3len 14535 | . . . . . . . . 9 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
15 | df-3 11967 | . . . . . . . . 9 ⊢ 3 = (2 + 1) | |
16 | 14, 15 | eqtri 2766 | . . . . . . . 8 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1) |
17 | 16 | oveq2i 7266 | . . . . . . 7 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^(2 + 1)) |
18 | 17 | feq2i 6576 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶ℝ+ ↔ 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
19 | 13, 18 | sylib 217 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
20 | 15 | oveq2i 7266 | . . . . . 6 ⊢ (0..^3) = (0..^(2 + 1)) |
21 | 20 | feq2i 6576 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+ ↔ 〈“𝐴𝐵𝐶”〉:(0..^(2 + 1))⟶ℝ+) |
22 | 19, 21 | sylibr 233 | . . . 4 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+) |
23 | 12, 22 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^3)⟶ℝ+) |
24 | 1, 3, 8, 23 | amgmlem 26044 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉)↑𝑐(1 / (♯‘(0..^3)))) ≤ ((ℂfld Σg 〈“𝐴𝐵𝐶”〉) / (♯‘(0..^3)))) |
25 | cnring 20532 | . . . . 5 ⊢ ℂfld ∈ Ring | |
26 | 1 | ringmgp 19704 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
27 | 25, 26 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
28 | 9 | rpcnd 12703 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
29 | 10 | rpcnd 12703 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
30 | 11 | rpcnd 12703 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
31 | 28, 29, 30 | jca32 515 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) |
32 | cnfldbas 20514 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
33 | 1, 32 | mgpbas 19641 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
34 | cnfldmul 20516 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
35 | 1, 34 | mgpplusg 19639 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
36 | 33, 35 | gsumws3 41696 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 · (𝐵 · 𝐶))) |
37 | 27, 31, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 · (𝐵 · 𝐶))) |
38 | 3nn0 12181 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
39 | hashfzo0 14073 | . . . . 5 ⊢ (3 ∈ ℕ0 → (♯‘(0..^3)) = 3) | |
40 | 38, 39 | mp1i 13 | . . . 4 ⊢ (𝜑 → (♯‘(0..^3)) = 3) |
41 | 40 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (1 / (♯‘(0..^3))) = (1 / 3)) |
42 | 37, 41 | oveq12d 7273 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶”〉)↑𝑐(1 / (♯‘(0..^3)))) = ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3))) |
43 | ringmnd 19708 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
44 | 25, 43 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
45 | cnfldadd 20515 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
46 | 32, 45 | gsumws3 41696 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))) → (ℂfld Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 + (𝐵 + 𝐶))) |
47 | 44, 31, 46 | syl2anc 583 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝐴𝐵𝐶”〉) = (𝐴 + (𝐵 + 𝐶))) |
48 | 47, 40 | oveq12d 7273 | . 2 ⊢ (𝜑 → ((ℂfld Σg 〈“𝐴𝐵𝐶”〉) / (♯‘(0..^3))) = ((𝐴 + (𝐵 + 𝐶)) / 3)) |
49 | 24, 42, 48 | 3brtr3d 5101 | 1 ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℕ0cn0 12163 ℝ+crp 12659 ..^cfzo 13311 ♯chash 13972 Word cword 14145 〈“cs3 14483 Σg cgsu 17068 Mndcmnd 18300 mulGrpcmgp 19635 Ringcrg 19698 ℂfldccnfld 20510 ↑𝑐ccxp 25616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-subrg 19937 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-refld 20722 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |