| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > amgm2d | Structured version Visualization version GIF version | ||
| Description: Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26970. (Contributed by Stanislas Polu, 8-Sep-2020.) |
| Ref | Expression |
|---|---|
| amgm2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| amgm2d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| amgm2d | ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 2 | fzofi 13997 | . . . 4 ⊢ (0..^2) ∈ Fin | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
| 4 | 2nn 12321 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | lbfzo0 13721 | . . . . . 6 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . . 5 ⊢ 0 ∈ (0..^2) |
| 7 | 6 | ne0ii 4324 | . . . 4 ⊢ (0..^2) ≠ ∅ |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
| 9 | amgm2d.0 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 10 | amgm2d.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 11 | 9, 10 | s2cld 14893 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
| 12 | wrdf 14540 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
| 13 | s2len 14911 | . . . . . . . 8 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
| 14 | 13 | eqcomi 2743 | . . . . . . 7 ⊢ 2 = (♯‘〈“𝐴𝐵”〉) |
| 15 | 14 | oveq2i 7424 | . . . . . 6 ⊢ (0..^2) = (0..^(♯‘〈“𝐴𝐵”〉)) |
| 16 | 15 | feq2i 6708 | . . . . 5 ⊢ (〈“𝐴𝐵”〉:(0..^2)⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
| 17 | 12, 16 | sylibr 234 | . . . 4 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 18 | 11, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
| 19 | 1, 3, 8, 18 | amgmlem 26970 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉)↑𝑐(1 / (♯‘(0..^2)))) ≤ ((ℂfld Σg 〈“𝐴𝐵”〉) / (♯‘(0..^2)))) |
| 20 | cnring 21366 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 21 | 1 | ringmgp 20205 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 22 | 20, 21 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
| 23 | 9 | rpcnd 13061 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 24 | 10 | rpcnd 13061 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 25 | cnfldbas 21331 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 26 | 1, 25 | mgpbas 20111 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 27 | cnfldmul 21335 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 28 | 1, 27 | mgpplusg 20110 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 29 | 26, 28 | gsumws2 18825 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉) = (𝐴 · 𝐵)) |
| 30 | 22, 23, 24, 29 | syl3anc 1372 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉) = (𝐴 · 𝐵)) |
| 31 | 2nn0 12526 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 32 | hashfzo0 14452 | . . . . 5 ⊢ (2 ∈ ℕ0 → (♯‘(0..^2)) = 2) | |
| 33 | 31, 32 | mp1i 13 | . . . 4 ⊢ (𝜑 → (♯‘(0..^2)) = 2) |
| 34 | 33 | oveq2d 7429 | . . 3 ⊢ (𝜑 → (1 / (♯‘(0..^2))) = (1 / 2)) |
| 35 | 30, 34 | oveq12d 7431 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉)↑𝑐(1 / (♯‘(0..^2)))) = ((𝐴 · 𝐵)↑𝑐(1 / 2))) |
| 36 | ringmnd 20209 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 37 | 20, 36 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 38 | cnfldadd 21333 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 39 | 25, 38 | gsumws2 18825 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℂfld Σg 〈“𝐴𝐵”〉) = (𝐴 + 𝐵)) |
| 40 | 37, 23, 24, 39 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝐴𝐵”〉) = (𝐴 + 𝐵)) |
| 41 | 40, 33 | oveq12d 7431 | . 2 ⊢ (𝜑 → ((ℂfld Σg 〈“𝐴𝐵”〉) / (♯‘(0..^2))) = ((𝐴 + 𝐵) / 2)) |
| 42 | 19, 35, 41 | 3brtr3d 5154 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 ≤ cle 11278 / cdiv 11902 ℕcn 12248 2c2 12303 ℕ0cn0 12509 ℝ+crp 13016 ..^cfzo 13676 ♯chash 14352 Word cword 14535 〈“cs2 14863 Σg cgsu 17457 Mndcmnd 18717 mulGrpcmgp 20106 Ringcrg 20199 ℂfldccnfld 21327 ↑𝑐ccxp 26534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14296 df-bc 14325 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-pi 16091 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-cntz 19305 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-subrng 20515 df-subrg 20539 df-drng 20700 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-refld 21578 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cld 22974 df-ntr 22975 df-cls 22976 df-nei 23053 df-lp 23091 df-perf 23092 df-cn 23182 df-cnp 23183 df-haus 23270 df-cmp 23342 df-tx 23517 df-hmeo 23710 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-xms 24276 df-ms 24277 df-tms 24278 df-cncf 24841 df-limc 25838 df-dv 25839 df-log 26535 df-cxp 26536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |