Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amgm2d | Structured version Visualization version GIF version |
Description: Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26150. (Contributed by Stanislas Polu, 8-Sep-2020.) |
Ref | Expression |
---|---|
amgm2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
amgm2d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
amgm2d | ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
2 | fzofi 13705 | . . . 4 ⊢ (0..^2) ∈ Fin | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ∈ Fin) |
4 | 2nn 12057 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | lbfzo0 13438 | . . . . . 6 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
6 | 4, 5 | mpbir 230 | . . . . 5 ⊢ 0 ∈ (0..^2) |
7 | 6 | ne0ii 4277 | . . . 4 ⊢ (0..^2) ≠ ∅ |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^2) ≠ ∅) |
9 | amgm2d.0 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | amgm2d.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
11 | 9, 10 | s2cld 14595 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word ℝ+) |
12 | wrdf 14233 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) | |
13 | s2len 14613 | . . . . . . . 8 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
14 | 13 | eqcomi 2749 | . . . . . . 7 ⊢ 2 = (♯‘〈“𝐴𝐵”〉) |
15 | 14 | oveq2i 7283 | . . . . . 6 ⊢ (0..^2) = (0..^(♯‘〈“𝐴𝐵”〉)) |
16 | 15 | feq2i 6590 | . . . . 5 ⊢ (〈“𝐴𝐵”〉:(0..^2)⟶ℝ+ ↔ 〈“𝐴𝐵”〉:(0..^(♯‘〈“𝐴𝐵”〉))⟶ℝ+) |
17 | 12, 16 | sylibr 233 | . . . 4 ⊢ (〈“𝐴𝐵”〉 ∈ Word ℝ+ → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
18 | 11, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉:(0..^2)⟶ℝ+) |
19 | 1, 3, 8, 18 | amgmlem 26150 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉)↑𝑐(1 / (♯‘(0..^2)))) ≤ ((ℂfld Σg 〈“𝐴𝐵”〉) / (♯‘(0..^2)))) |
20 | cnring 20631 | . . . . 5 ⊢ ℂfld ∈ Ring | |
21 | 1 | ringmgp 19800 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
22 | 20, 21 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
23 | 9 | rpcnd 12785 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
24 | 10 | rpcnd 12785 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
25 | cnfldbas 20612 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
26 | 1, 25 | mgpbas 19737 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
27 | cnfldmul 20614 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
28 | 1, 27 | mgpplusg 19735 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
29 | 26, 28 | gsumws2 18492 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉) = (𝐴 · 𝐵)) |
30 | 22, 23, 24, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉) = (𝐴 · 𝐵)) |
31 | 2nn0 12261 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
32 | hashfzo0 14156 | . . . . 5 ⊢ (2 ∈ ℕ0 → (♯‘(0..^2)) = 2) | |
33 | 31, 32 | mp1i 13 | . . . 4 ⊢ (𝜑 → (♯‘(0..^2)) = 2) |
34 | 33 | oveq2d 7288 | . . 3 ⊢ (𝜑 → (1 / (♯‘(0..^2))) = (1 / 2)) |
35 | 30, 34 | oveq12d 7290 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵”〉)↑𝑐(1 / (♯‘(0..^2)))) = ((𝐴 · 𝐵)↑𝑐(1 / 2))) |
36 | ringmnd 19804 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
37 | 20, 36 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
38 | cnfldadd 20613 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
39 | 25, 38 | gsumws2 18492 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℂfld Σg 〈“𝐴𝐵”〉) = (𝐴 + 𝐵)) |
40 | 37, 23, 24, 39 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝐴𝐵”〉) = (𝐴 + 𝐵)) |
41 | 40, 33 | oveq12d 7290 | . 2 ⊢ (𝜑 → ((ℂfld Σg 〈“𝐴𝐵”〉) / (♯‘(0..^2))) = ((𝐴 + 𝐵) / 2)) |
42 | 19, 35, 41 | 3brtr3d 5110 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 class class class wbr 5079 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 Fincfn 8725 ℂcc 10880 0cc0 10882 1c1 10883 + caddc 10885 · cmul 10887 ≤ cle 11021 / cdiv 11643 ℕcn 11984 2c2 12039 ℕ0cn0 12244 ℝ+crp 12741 ..^cfzo 13393 ♯chash 14055 Word cword 14228 〈“cs2 14565 Σg cgsu 17162 Mndcmnd 18396 mulGrpcmgp 19731 Ringcrg 19794 ℂfldccnfld 20608 ↑𝑐ccxp 25722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 ax-addf 10961 ax-mulf 10962 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-2o 8290 df-er 8490 df-map 8609 df-pm 8610 df-ixp 8678 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-fi 9158 df-sup 9189 df-inf 9190 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-q 12700 df-rp 12742 df-xneg 12859 df-xadd 12860 df-xmul 12861 df-ioo 13094 df-ioc 13095 df-ico 13096 df-icc 13097 df-fz 13251 df-fzo 13394 df-fl 13523 df-mod 13601 df-seq 13733 df-exp 13794 df-fac 13999 df-bc 14028 df-hash 14056 df-word 14229 df-concat 14285 df-s1 14312 df-s2 14572 df-shft 14789 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-limsup 15191 df-clim 15208 df-rlim 15209 df-sum 15409 df-ef 15788 df-sin 15790 df-cos 15791 df-pi 15793 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-starv 16988 df-sca 16989 df-vsca 16990 df-ip 16991 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-hom 16997 df-cco 16998 df-rest 17144 df-topn 17145 df-0g 17163 df-gsum 17164 df-topgen 17165 df-pt 17166 df-prds 17169 df-xrs 17224 df-qtop 17229 df-imas 17230 df-xps 17232 df-mre 17306 df-mrc 17307 df-acs 17309 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-mhm 18441 df-submnd 18442 df-grp 18591 df-minusg 18592 df-mulg 18712 df-subg 18763 df-ghm 18843 df-gim 18886 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-cring 19797 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 df-dvr 19936 df-drng 20004 df-subrg 20033 df-psmet 20600 df-xmet 20601 df-met 20602 df-bl 20603 df-mopn 20604 df-fbas 20605 df-fg 20606 df-cnfld 20609 df-refld 20821 df-top 22054 df-topon 22071 df-topsp 22093 df-bases 22107 df-cld 22181 df-ntr 22182 df-cls 22183 df-nei 22260 df-lp 22298 df-perf 22299 df-cn 22389 df-cnp 22390 df-haus 22477 df-cmp 22549 df-tx 22724 df-hmeo 22917 df-fil 23008 df-fm 23100 df-flim 23101 df-flf 23102 df-xms 23484 df-ms 23485 df-tms 23486 df-cncf 24052 df-limc 25041 df-dv 25042 df-log 25723 df-cxp 25724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |