MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardid Structured version   Visualization version   GIF version

Theorem ficardid 9719
Description: A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.)
Assertion
Ref Expression
ficardid (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)

Proof of Theorem ficardid
StepHypRef Expression
1 finnum 9705 . 2 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 cardid2 9710 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
31, 2syl 17 1 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110   class class class wbr 5079  dom cdm 5589  cfv 6431  cen 8711  Fincfn 8714  cardccrd 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7705  df-er 8479  df-en 8715  df-fin 8718  df-card 9696
This theorem is referenced by:  isinffi  9749  finnisoeu  9868  ficardadju  9954  ackbij1lem5  9979  ackbij1lem9  9983  ackbij1b  9994  ackbij2lem2  9995  fin1a2lem11  10165  mreexexd  17353
  Copyright terms: Public domain W3C validator