MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardid Structured version   Visualization version   GIF version

Theorem ficardid 9984
Description: A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.)
Assertion
Ref Expression
ficardid (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)

Proof of Theorem ficardid
StepHypRef Expression
1 finnum 9970 . 2 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 cardid2 9975 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
31, 2syl 17 1 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5123  dom cdm 5665  cfv 6541  cen 8964  Fincfn 8967  cardccrd 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-er 8727  df-en 8968  df-fin 8971  df-card 9961
This theorem is referenced by:  isinffi  10014  finnisoeu  10135  ficardadju  10222  ackbij1lem5  10245  ackbij1lem9  10249  ackbij1b  10260  ackbij2lem2  10261  fin1a2lem11  10432  mreexexd  17662
  Copyright terms: Public domain W3C validator