MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardid Structured version   Visualization version   GIF version

Theorem ficardid 9367
Description: A finite set is equinumerous to its cardinal number. (Contributed by Mario Carneiro, 21-Sep-2013.)
Assertion
Ref Expression
ficardid (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)

Proof of Theorem ficardid
StepHypRef Expression
1 finnum 9353 . 2 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
2 cardid2 9358 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
31, 2syl 17 1 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115   class class class wbr 5039  dom cdm 5528  cfv 6328  cen 8481  Fincfn 8484  cardccrd 9340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7556  df-er 8264  df-en 8485  df-fin 8488  df-card 9344
This theorem is referenced by:  isinffi  9397  finnisoeu  9516  ackbij1lem5  9623  ackbij1lem9  9627  ackbij1b  9638  ackbij2lem2  9639  fin1a2lem11  9809  mreexexd  16898
  Copyright terms: Public domain W3C validator