Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin23lem13 | Structured version Visualization version GIF version |
Description: Lemma for fin23 9891. Each step of 𝑈 is a decrease. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem13 | ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ⊆ (𝑈‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . 3 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fin23lem12 9833 | . 2 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
3 | sseq1 3902 | . . 3 ⊢ ((𝑈‘𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → ((𝑈‘𝐴) ⊆ (𝑈‘𝐴) ↔ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ⊆ (𝑈‘𝐴))) | |
4 | sseq1 3902 | . . 3 ⊢ (((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑈‘𝐴) ↔ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ⊆ (𝑈‘𝐴))) | |
5 | ssid 3899 | . . 3 ⊢ (𝑈‘𝐴) ⊆ (𝑈‘𝐴) | |
6 | inss2 4120 | . . 3 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑈‘𝐴) | |
7 | 3, 4, 5, 6 | keephyp 4485 | . 2 ⊢ if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ⊆ (𝑈‘𝐴) |
8 | 2, 7 | eqsstrdi 3931 | 1 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ⊆ (𝑈‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∩ cin 3842 ⊆ wss 3843 ∅c0 4211 ifcif 4414 ∪ cuni 4796 ran crn 5526 suc csuc 6174 ‘cfv 6339 ∈ cmpo 7174 ωcom 7601 seqωcseqom 8114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-seqom 8115 |
This theorem is referenced by: fin23lem15 9836 fin23lem17 9840 |
Copyright terms: Public domain | W3C validator |