MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Visualization version   GIF version

Theorem fin23lem14 10356
Description: Lemma for fin23 10412. 𝑈 will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem14 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6887 . . . . 5 (𝑎 = ∅ → (𝑈𝑎) = (𝑈‘∅))
21neeq1d 2990 . . . 4 (𝑎 = ∅ → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘∅) ≠ ∅))
32imbi2d 340 . . 3 (𝑎 = ∅ → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)))
4 fveq2 6887 . . . . 5 (𝑎 = 𝑏 → (𝑈𝑎) = (𝑈𝑏))
54neeq1d 2990 . . . 4 (𝑎 = 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝑏) ≠ ∅))
65imbi2d 340 . . 3 (𝑎 = 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅)))
7 fveq2 6887 . . . . 5 (𝑎 = suc 𝑏 → (𝑈𝑎) = (𝑈‘suc 𝑏))
87neeq1d 2990 . . . 4 (𝑎 = suc 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘suc 𝑏) ≠ ∅))
98imbi2d 340 . . 3 (𝑎 = suc 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
10 fveq2 6887 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
1110neeq1d 2990 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
1211imbi2d 340 . . 3 (𝑎 = 𝐴 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅)))
13 vex 3468 . . . . . . 7 𝑡 ∈ V
1413rnex 7915 . . . . . 6 ran 𝑡 ∈ V
1514uniex 7744 . . . . 5 ran 𝑡 ∈ V
16 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1716seqom0g 8479 . . . . 5 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1815, 17mp1i 13 . . . 4 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) = ran 𝑡)
19 id 22 . . . 4 ( ran 𝑡 ≠ ∅ → ran 𝑡 ≠ ∅)
2018, 19eqnetrd 2998 . . 3 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)
2116fin23lem12 10354 . . . . . . 7 (𝑏 ∈ ω → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
2221adantr 480 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
23 iftrue 4513 . . . . . . . . 9 (((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
2423adantr 480 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
25 simprr 772 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → (𝑈𝑏) ≠ ∅)
2624, 25eqnetrd 2998 . . . . . . 7 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
27 iffalse 4516 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
2827adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
29 neqne 2939 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3029adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3128, 30eqnetrd 2998 . . . . . . 7 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3226, 31pm2.61ian 811 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3322, 32eqnetrd 2998 . . . . 5 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) ≠ ∅)
3433ex 412 . . . 4 (𝑏 ∈ ω → ((𝑈𝑏) ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))
3534imim2d 57 . . 3 (𝑏 ∈ ω → (( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅) → ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
363, 6, 9, 12, 20, 35finds 7901 . 2 (𝐴 ∈ ω → ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅))
3736imp 406 1 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3464  cin 3932  c0 4315  ifcif 4507   cuni 4889  ran crn 5668  suc csuc 6367  cfv 6542  cmpo 7416  ωcom 7870  seqωcseqom 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-seqom 8471
This theorem is referenced by:  fin23lem21  10362
  Copyright terms: Public domain W3C validator