Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Visualization version   GIF version

Theorem fin23lem14 9747
 Description: Lemma for fin23 9803. 𝑈 will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem14 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . 5 (𝑎 = ∅ → (𝑈𝑎) = (𝑈‘∅))
21neeq1d 3073 . . . 4 (𝑎 = ∅ → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘∅) ≠ ∅))
32imbi2d 343 . . 3 (𝑎 = ∅ → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)))
4 fveq2 6663 . . . . 5 (𝑎 = 𝑏 → (𝑈𝑎) = (𝑈𝑏))
54neeq1d 3073 . . . 4 (𝑎 = 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝑏) ≠ ∅))
65imbi2d 343 . . 3 (𝑎 = 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅)))
7 fveq2 6663 . . . . 5 (𝑎 = suc 𝑏 → (𝑈𝑎) = (𝑈‘suc 𝑏))
87neeq1d 3073 . . . 4 (𝑎 = suc 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘suc 𝑏) ≠ ∅))
98imbi2d 343 . . 3 (𝑎 = suc 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
10 fveq2 6663 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
1110neeq1d 3073 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
1211imbi2d 343 . . 3 (𝑎 = 𝐴 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅)))
13 vex 3496 . . . . . . 7 𝑡 ∈ V
1413rnex 7609 . . . . . 6 ran 𝑡 ∈ V
1514uniex 7459 . . . . 5 ran 𝑡 ∈ V
16 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1716seqom0g 8084 . . . . 5 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1815, 17mp1i 13 . . . 4 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) = ran 𝑡)
19 id 22 . . . 4 ( ran 𝑡 ≠ ∅ → ran 𝑡 ≠ ∅)
2018, 19eqnetrd 3081 . . 3 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)
2116fin23lem12 9745 . . . . . . 7 (𝑏 ∈ ω → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
2221adantr 483 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
23 iftrue 4471 . . . . . . . . 9 (((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
2423adantr 483 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
25 simprr 771 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → (𝑈𝑏) ≠ ∅)
2624, 25eqnetrd 3081 . . . . . . 7 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
27 iffalse 4474 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
2827adantr 483 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
29 neqne 3022 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3029adantr 483 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3128, 30eqnetrd 3081 . . . . . . 7 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3226, 31pm2.61ian 810 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3322, 32eqnetrd 3081 . . . . 5 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) ≠ ∅)
3433ex 415 . . . 4 (𝑏 ∈ ω → ((𝑈𝑏) ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))
3534imim2d 57 . . 3 (𝑏 ∈ ω → (( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅) → ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
363, 6, 9, 12, 20, 35finds 7600 . 2 (𝐴 ∈ ω → ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅))
3736imp 409 1 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  Vcvv 3493   ∩ cin 3933  ∅c0 4289  ifcif 4465  ∪ cuni 4830  ran crn 5549  suc csuc 6186  ‘cfv 6348   ∈ cmpo 7150  ωcom 7572  seqωcseqom 8075 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-seqom 8076 This theorem is referenced by:  fin23lem21  9753
 Copyright terms: Public domain W3C validator