MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Visualization version   GIF version

Theorem fin23lem14 10286
Description: Lemma for fin23 10342. 𝑈 will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem14 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . 5 (𝑎 = ∅ → (𝑈𝑎) = (𝑈‘∅))
21neeq1d 2984 . . . 4 (𝑎 = ∅ → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘∅) ≠ ∅))
32imbi2d 340 . . 3 (𝑎 = ∅ → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)))
4 fveq2 6858 . . . . 5 (𝑎 = 𝑏 → (𝑈𝑎) = (𝑈𝑏))
54neeq1d 2984 . . . 4 (𝑎 = 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝑏) ≠ ∅))
65imbi2d 340 . . 3 (𝑎 = 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅)))
7 fveq2 6858 . . . . 5 (𝑎 = suc 𝑏 → (𝑈𝑎) = (𝑈‘suc 𝑏))
87neeq1d 2984 . . . 4 (𝑎 = suc 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘suc 𝑏) ≠ ∅))
98imbi2d 340 . . 3 (𝑎 = suc 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
10 fveq2 6858 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
1110neeq1d 2984 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
1211imbi2d 340 . . 3 (𝑎 = 𝐴 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅)))
13 vex 3451 . . . . . . 7 𝑡 ∈ V
1413rnex 7886 . . . . . 6 ran 𝑡 ∈ V
1514uniex 7717 . . . . 5 ran 𝑡 ∈ V
16 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1716seqom0g 8424 . . . . 5 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1815, 17mp1i 13 . . . 4 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) = ran 𝑡)
19 id 22 . . . 4 ( ran 𝑡 ≠ ∅ → ran 𝑡 ≠ ∅)
2018, 19eqnetrd 2992 . . 3 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)
2116fin23lem12 10284 . . . . . . 7 (𝑏 ∈ ω → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
2221adantr 480 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
23 iftrue 4494 . . . . . . . . 9 (((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
2423adantr 480 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
25 simprr 772 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → (𝑈𝑏) ≠ ∅)
2624, 25eqnetrd 2992 . . . . . . 7 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
27 iffalse 4497 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
2827adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
29 neqne 2933 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3029adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3128, 30eqnetrd 2992 . . . . . . 7 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3226, 31pm2.61ian 811 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3322, 32eqnetrd 2992 . . . . 5 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) ≠ ∅)
3433ex 412 . . . 4 (𝑏 ∈ ω → ((𝑈𝑏) ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))
3534imim2d 57 . . 3 (𝑏 ∈ ω → (( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅) → ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
363, 6, 9, 12, 20, 35finds 7872 . 2 (𝐴 ∈ ω → ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅))
3736imp 406 1 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cin 3913  c0 4296  ifcif 4488   cuni 4871  ran crn 5639  suc csuc 6334  cfv 6511  cmpo 7389  ωcom 7842  seqωcseqom 8415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416
This theorem is referenced by:  fin23lem21  10292
  Copyright terms: Public domain W3C validator