![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem16 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10458. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 4963 | . . 3 ⊢ (∪ ran 𝑈 ⊆ ∪ ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ⊆ ∪ ran 𝑡) | |
2 | fin23lem.a | . . . . . 6 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
3 | 2 | fnseqom 8511 | . . . . 5 ⊢ 𝑈 Fn ω |
4 | fvelrnb 6982 | . . . . 5 ⊢ (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎) |
6 | peano1 7927 | . . . . . . . 8 ⊢ ∅ ∈ ω | |
7 | 0ss 4423 | . . . . . . . . 9 ⊢ ∅ ⊆ 𝑏 | |
8 | 2 | fin23lem15 10403 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
9 | 7, 8 | mpan2 690 | . . . . . . . 8 ⊢ ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
10 | 6, 9 | mpan2 690 | . . . . . . 7 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
11 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑡 ∈ V | |
12 | 11 | rnex 7950 | . . . . . . . . 9 ⊢ ran 𝑡 ∈ V |
13 | 12 | uniex 7776 | . . . . . . . 8 ⊢ ∪ ran 𝑡 ∈ V |
14 | 2 | seqom0g 8512 | . . . . . . . 8 ⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑈‘∅) = ∪ ran 𝑡 |
16 | 10, 15 | sseqtrdi 4059 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ ∪ ran 𝑡) |
17 | sseq1 4034 | . . . . . 6 ⊢ ((𝑈‘𝑏) = 𝑎 → ((𝑈‘𝑏) ⊆ ∪ ran 𝑡 ↔ 𝑎 ⊆ ∪ ran 𝑡)) | |
18 | 16, 17 | syl5ibcom 245 | . . . . 5 ⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡)) |
19 | 18 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡) |
20 | 5, 19 | sylbi 217 | . . 3 ⊢ (𝑎 ∈ ran 𝑈 → 𝑎 ⊆ ∪ ran 𝑡) |
21 | 1, 20 | mprgbir 3074 | . 2 ⊢ ∪ ran 𝑈 ⊆ ∪ ran 𝑡 |
22 | fnfvelrn 7114 | . . . . 5 ⊢ ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈) | |
23 | 3, 6, 22 | mp2an 691 | . . . 4 ⊢ (𝑈‘∅) ∈ ran 𝑈 |
24 | 15, 23 | eqeltrri 2841 | . . 3 ⊢ ∪ ran 𝑡 ∈ ran 𝑈 |
25 | elssuni 4961 | . . 3 ⊢ (∪ ran 𝑡 ∈ ran 𝑈 → ∪ ran 𝑡 ⊆ ∪ ran 𝑈) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ∪ ran 𝑡 ⊆ ∪ ran 𝑈 |
27 | 21, 26 | eqssi 4025 | 1 ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ran crn 5701 Fn wfn 6568 ‘cfv 6573 ∈ cmpo 7450 ωcom 7903 seqωcseqom 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 |
This theorem is referenced by: fin23lem17 10407 fin23lem31 10412 |
Copyright terms: Public domain | W3C validator |