| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem16 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10349. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 4906 | . . 3 ⊢ (∪ ran 𝑈 ⊆ ∪ ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ⊆ ∪ ran 𝑡) | |
| 2 | fin23lem.a | . . . . . 6 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 3 | 2 | fnseqom 8426 | . . . . 5 ⊢ 𝑈 Fn ω |
| 4 | fvelrnb 6924 | . . . . 5 ⊢ (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎) |
| 6 | peano1 7868 | . . . . . . . 8 ⊢ ∅ ∈ ω | |
| 7 | 0ss 4366 | . . . . . . . . 9 ⊢ ∅ ⊆ 𝑏 | |
| 8 | 2 | fin23lem15 10294 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
| 9 | 7, 8 | mpan2 691 | . . . . . . . 8 ⊢ ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
| 10 | 6, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
| 11 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑡 ∈ V | |
| 12 | 11 | rnex 7889 | . . . . . . . . 9 ⊢ ran 𝑡 ∈ V |
| 13 | 12 | uniex 7720 | . . . . . . . 8 ⊢ ∪ ran 𝑡 ∈ V |
| 14 | 2 | seqom0g 8427 | . . . . . . . 8 ⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑈‘∅) = ∪ ran 𝑡 |
| 16 | 10, 15 | sseqtrdi 3990 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ ∪ ran 𝑡) |
| 17 | sseq1 3975 | . . . . . 6 ⊢ ((𝑈‘𝑏) = 𝑎 → ((𝑈‘𝑏) ⊆ ∪ ran 𝑡 ↔ 𝑎 ⊆ ∪ ran 𝑡)) | |
| 18 | 16, 17 | syl5ibcom 245 | . . . . 5 ⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡)) |
| 19 | 18 | rexlimiv 3128 | . . . 4 ⊢ (∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡) |
| 20 | 5, 19 | sylbi 217 | . . 3 ⊢ (𝑎 ∈ ran 𝑈 → 𝑎 ⊆ ∪ ran 𝑡) |
| 21 | 1, 20 | mprgbir 3052 | . 2 ⊢ ∪ ran 𝑈 ⊆ ∪ ran 𝑡 |
| 22 | fnfvelrn 7055 | . . . . 5 ⊢ ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈) | |
| 23 | 3, 6, 22 | mp2an 692 | . . . 4 ⊢ (𝑈‘∅) ∈ ran 𝑈 |
| 24 | 15, 23 | eqeltrri 2826 | . . 3 ⊢ ∪ ran 𝑡 ∈ ran 𝑈 |
| 25 | elssuni 4904 | . . 3 ⊢ (∪ ran 𝑡 ∈ ran 𝑈 → ∪ ran 𝑡 ⊆ ∪ ran 𝑈) | |
| 26 | 24, 25 | ax-mp 5 | . 2 ⊢ ∪ ran 𝑡 ⊆ ∪ ran 𝑈 |
| 27 | 21, 26 | eqssi 3966 | 1 ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ifcif 4491 ∪ cuni 4874 ran crn 5642 Fn wfn 6509 ‘cfv 6514 ∈ cmpo 7392 ωcom 7845 seqωcseqom 8418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqom 8419 |
| This theorem is referenced by: fin23lem17 10298 fin23lem31 10303 |
| Copyright terms: Public domain | W3C validator |