MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem16 Structured version   Visualization version   GIF version

Theorem fin23lem16 10295
Description: Lemma for fin23 10349. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem16 ran 𝑈 = ran 𝑡
Distinct variable groups:   𝑡,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hint:   𝑈(𝑡)

Proof of Theorem fin23lem16
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4906 . . 3 ( ran 𝑈 ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ran 𝑡)
2 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
32fnseqom 8426 . . . . 5 𝑈 Fn ω
4 fvelrnb 6924 . . . . 5 (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈𝑏) = 𝑎))
53, 4ax-mp 5 . . . 4 (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈𝑏) = 𝑎)
6 peano1 7868 . . . . . . . 8 ∅ ∈ ω
7 0ss 4366 . . . . . . . . 9 ∅ ⊆ 𝑏
82fin23lem15 10294 . . . . . . . . 9 (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈𝑏) ⊆ (𝑈‘∅))
97, 8mpan2 691 . . . . . . . 8 ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈𝑏) ⊆ (𝑈‘∅))
106, 9mpan2 691 . . . . . . 7 (𝑏 ∈ ω → (𝑈𝑏) ⊆ (𝑈‘∅))
11 vex 3454 . . . . . . . . . 10 𝑡 ∈ V
1211rnex 7889 . . . . . . . . 9 ran 𝑡 ∈ V
1312uniex 7720 . . . . . . . 8 ran 𝑡 ∈ V
142seqom0g 8427 . . . . . . . 8 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1513, 14ax-mp 5 . . . . . . 7 (𝑈‘∅) = ran 𝑡
1610, 15sseqtrdi 3990 . . . . . 6 (𝑏 ∈ ω → (𝑈𝑏) ⊆ ran 𝑡)
17 sseq1 3975 . . . . . 6 ((𝑈𝑏) = 𝑎 → ((𝑈𝑏) ⊆ ran 𝑡𝑎 ran 𝑡))
1816, 17syl5ibcom 245 . . . . 5 (𝑏 ∈ ω → ((𝑈𝑏) = 𝑎𝑎 ran 𝑡))
1918rexlimiv 3128 . . . 4 (∃𝑏 ∈ ω (𝑈𝑏) = 𝑎𝑎 ran 𝑡)
205, 19sylbi 217 . . 3 (𝑎 ∈ ran 𝑈𝑎 ran 𝑡)
211, 20mprgbir 3052 . 2 ran 𝑈 ran 𝑡
22 fnfvelrn 7055 . . . . 5 ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈)
233, 6, 22mp2an 692 . . . 4 (𝑈‘∅) ∈ ran 𝑈
2415, 23eqeltrri 2826 . . 3 ran 𝑡 ∈ ran 𝑈
25 elssuni 4904 . . 3 ( ran 𝑡 ∈ ran 𝑈 ran 𝑡 ran 𝑈)
2624, 25ax-mp 5 . 2 ran 𝑡 ran 𝑈
2721, 26eqssi 3966 1 ran 𝑈 = ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299  ifcif 4491   cuni 4874  ran crn 5642   Fn wfn 6509  cfv 6514  cmpo 7392  ωcom 7845  seqωcseqom 8418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419
This theorem is referenced by:  fin23lem17  10298  fin23lem31  10303
  Copyright terms: Public domain W3C validator