![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem16 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10380. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 4933 | . . 3 ⊢ (∪ ran 𝑈 ⊆ ∪ ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ⊆ ∪ ran 𝑡) | |
2 | fin23lem.a | . . . . . 6 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
3 | 2 | fnseqom 8450 | . . . . 5 ⊢ 𝑈 Fn ω |
4 | fvelrnb 6942 | . . . . 5 ⊢ (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎) |
6 | peano1 7872 | . . . . . . . 8 ⊢ ∅ ∈ ω | |
7 | 0ss 4388 | . . . . . . . . 9 ⊢ ∅ ⊆ 𝑏 | |
8 | 2 | fin23lem15 10325 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
9 | 7, 8 | mpan2 688 | . . . . . . . 8 ⊢ ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
10 | 6, 9 | mpan2 688 | . . . . . . 7 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
11 | vex 3470 | . . . . . . . . . 10 ⊢ 𝑡 ∈ V | |
12 | 11 | rnex 7896 | . . . . . . . . 9 ⊢ ran 𝑡 ∈ V |
13 | 12 | uniex 7724 | . . . . . . . 8 ⊢ ∪ ran 𝑡 ∈ V |
14 | 2 | seqom0g 8451 | . . . . . . . 8 ⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑈‘∅) = ∪ ran 𝑡 |
16 | 10, 15 | sseqtrdi 4024 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ ∪ ran 𝑡) |
17 | sseq1 3999 | . . . . . 6 ⊢ ((𝑈‘𝑏) = 𝑎 → ((𝑈‘𝑏) ⊆ ∪ ran 𝑡 ↔ 𝑎 ⊆ ∪ ran 𝑡)) | |
18 | 16, 17 | syl5ibcom 244 | . . . . 5 ⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡)) |
19 | 18 | rexlimiv 3140 | . . . 4 ⊢ (∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡) |
20 | 5, 19 | sylbi 216 | . . 3 ⊢ (𝑎 ∈ ran 𝑈 → 𝑎 ⊆ ∪ ran 𝑡) |
21 | 1, 20 | mprgbir 3060 | . 2 ⊢ ∪ ran 𝑈 ⊆ ∪ ran 𝑡 |
22 | fnfvelrn 7072 | . . . . 5 ⊢ ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈) | |
23 | 3, 6, 22 | mp2an 689 | . . . 4 ⊢ (𝑈‘∅) ∈ ran 𝑈 |
24 | 15, 23 | eqeltrri 2822 | . . 3 ⊢ ∪ ran 𝑡 ∈ ran 𝑈 |
25 | elssuni 4931 | . . 3 ⊢ (∪ ran 𝑡 ∈ ran 𝑈 → ∪ ran 𝑡 ⊆ ∪ ran 𝑈) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ∪ ran 𝑡 ⊆ ∪ ran 𝑈 |
27 | 21, 26 | eqssi 3990 | 1 ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 ifcif 4520 ∪ cuni 4899 ran crn 5667 Fn wfn 6528 ‘cfv 6533 ∈ cmpo 7403 ωcom 7848 seqωcseqom 8442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-seqom 8443 |
This theorem is referenced by: fin23lem17 10329 fin23lem31 10334 |
Copyright terms: Public domain | W3C validator |