| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fissorduni | Structured version Visualization version GIF version | ||
| Description: The union (supremum) of a finite set of ordinals less than a nonzero ordinal class is an element of that ordinal class. (Contributed by BTernaryTau, 15-Jan-2026.) |
| Ref | Expression |
|---|---|
| fissorduni | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → ∪ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0eln0 6367 | . . . . 5 ⊢ (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 2 | 1 | biimpar 477 | . . . 4 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅) → ∅ ∈ 𝐵) |
| 3 | uni0 4886 | . . . . . . 7 ⊢ ∪ ∅ = ∅ | |
| 4 | 3 | eleq1i 2824 | . . . . . 6 ⊢ (∪ ∅ ∈ 𝐵 ↔ ∅ ∈ 𝐵) |
| 5 | 4 | biimpri 228 | . . . . 5 ⊢ (∅ ∈ 𝐵 → ∪ ∅ ∈ 𝐵) |
| 6 | unieq 4869 | . . . . . 6 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
| 7 | 6 | eleq1d 2818 | . . . . 5 ⊢ (𝐴 = ∅ → (∪ 𝐴 ∈ 𝐵 ↔ ∪ ∅ ∈ 𝐵)) |
| 8 | 5, 7 | syl5ibrcom 247 | . . . 4 ⊢ (∅ ∈ 𝐵 → (𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵)) |
| 9 | 2, 8 | syl 17 | . . 3 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵)) |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵)) |
| 11 | ordsson 7722 | . . . . . . . . 9 ⊢ (Ord 𝐵 → 𝐵 ⊆ On) | |
| 12 | sstr 3939 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ On) → 𝐴 ⊆ On) | |
| 13 | 11, 12 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → 𝐴 ⊆ On) |
| 14 | 13 | adantrr 717 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → 𝐴 ⊆ On) |
| 15 | 14 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → 𝐴 ⊆ On) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ On) |
| 17 | simpl1 1192 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
| 18 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 19 | ordunifi 9181 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
| 21 | 20 | ex 412 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐴)) |
| 22 | ssel 3924 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ 𝐵)) | |
| 23 | 22 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ 𝐵)) |
| 24 | 21, 23 | syld 47 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐵)) |
| 25 | 10, 24 | pm2.61dne 3015 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → ∪ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4858 Ord word 6310 Oncon0 6311 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-en 8876 df-fin 8879 |
| This theorem is referenced by: rankfilimbi 35133 |
| Copyright terms: Public domain | W3C validator |