Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankfilimbi Structured version   Visualization version   GIF version

Theorem rankfilimbi 35105
Description: If all elements in a finite well-founded set have a rank less than a limit ordinal, then the rank of that set is also less than the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.)
Assertion
Ref Expression
rankfilimbi (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴

Proof of Theorem rankfilimbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)))
2 limsuc 7779 . . . . . . 7 (Lim 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ 𝐵))
32ralbidv 3155 . . . . . 6 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵))
43biimpd 229 . . . . 5 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 → ∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵))
5 fvex 6835 . . . . . . . 8 (rank‘𝑥) ∈ V
65sucex 7739 . . . . . . 7 suc (rank‘𝑥) ∈ V
76rgenw 3051 . . . . . 6 𝑥𝐴 suc (rank‘𝑥) ∈ V
8 uniiunlem 4037 . . . . . 6 (∀𝑥𝐴 suc (rank‘𝑥) ∈ V → (∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵))
97, 8ax-mp 5 . . . . 5 (∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
104, 9imbitrdi 251 . . . 4 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵))
1110impcom 407 . . 3 ((∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
1211adantl 481 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
13 limord 6367 . . . 4 (Lim 𝐵 → Ord 𝐵)
14 0ellim 6370 . . . . 5 (Lim 𝐵 → ∅ ∈ 𝐵)
1514ne0d 4292 . . . 4 (Lim 𝐵𝐵 ≠ ∅)
1613, 15jca 511 . . 3 (Lim 𝐵 → (Ord 𝐵𝐵 ≠ ∅))
1716ad2antll 729 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (Ord 𝐵𝐵 ≠ ∅))
18 rankval4b 35104 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥))
196dfiun2 4982 . . . . . 6 𝑥𝐴 suc (rank‘𝑥) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)}
2018, 19eqtrdi 2782 . . . . 5 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
2120adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
22213ad2ant1 1133 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
23 abrexfi 9236 . . . . 5 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin)
24 fissorduni 35096 . . . . 5 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
2523, 24syl3an1 1163 . . . 4 ((𝐴 ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
26253adant1r 1178 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
2722, 26eqeltrd 2831 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → (rank‘𝐴) ∈ 𝐵)
281, 12, 17, 27syl3anc 1373 1 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3902  c0 4283   cuni 4859   ciun 4941  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  cfv 6481  Fincfn 8869  𝑅1cr1 9652  rankcrnk 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-r1 9654  df-rank 9655
This theorem is referenced by:  r1filimi  35106
  Copyright terms: Public domain W3C validator