Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankfilimbi Structured version   Visualization version   GIF version

Theorem rankfilimbi 35133
Description: If all elements in a finite well-founded set have a rank less than a limit ordinal, then the rank of that set is also less than the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.)
Assertion
Ref Expression
rankfilimbi (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴

Proof of Theorem rankfilimbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)))
2 limsuc 7785 . . . . . . 7 (Lim 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ 𝐵))
32ralbidv 3156 . . . . . 6 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵))
43biimpd 229 . . . . 5 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 → ∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵))
5 fvex 6841 . . . . . . . 8 (rank‘𝑥) ∈ V
65sucex 7745 . . . . . . 7 suc (rank‘𝑥) ∈ V
76rgenw 3052 . . . . . 6 𝑥𝐴 suc (rank‘𝑥) ∈ V
8 uniiunlem 4036 . . . . . 6 (∀𝑥𝐴 suc (rank‘𝑥) ∈ V → (∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵))
97, 8ax-mp 5 . . . . 5 (∀𝑥𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
104, 9imbitrdi 251 . . . 4 (Lim 𝐵 → (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵))
1110impcom 407 . . 3 ((∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
1211adantl 481 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)
13 limord 6372 . . . 4 (Lim 𝐵 → Ord 𝐵)
14 0ellim 6375 . . . . 5 (Lim 𝐵 → ∅ ∈ 𝐵)
1514ne0d 4291 . . . 4 (Lim 𝐵𝐵 ≠ ∅)
1613, 15jca 511 . . 3 (Lim 𝐵 → (Ord 𝐵𝐵 ≠ ∅))
1716ad2antll 729 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (Ord 𝐵𝐵 ≠ ∅))
18 rankval4b 35132 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥))
196dfiun2 4982 . . . . . 6 𝑥𝐴 suc (rank‘𝑥) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)}
2018, 19eqtrdi 2784 . . . . 5 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
2120adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
22213ad2ant1 1133 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → (rank‘𝐴) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)})
23 abrexfi 9243 . . . . 5 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin)
24 fissorduni 35122 . . . . 5 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
2523, 24syl3an1 1163 . . . 4 ((𝐴 ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
26253adant1r 1178 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵)
2722, 26eqeltrd 2833 . 2 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵𝐵 ≠ ∅)) → (rank‘𝐴) ∈ 𝐵)
281, 12, 17, 27syl3anc 1373 1 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282   cuni 4858   ciun 4941  cima 5622  Ord word 6310  Oncon0 6311  Lim wlim 6312  suc csuc 6313  cfv 6486  Fincfn 8875  𝑅1cr1 9662  rankcrnk 9663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879  df-r1 9664  df-rank 9665
This theorem is referenced by:  rankfilimb  35134  r1filimi  35135
  Copyright terms: Public domain W3C validator