| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (𝐴 ∈ Fin ∧ 𝐴 ∈ ∪
(𝑅1 “ On))) |
| 2 | | limsuc 7779 |
. . . . . . 7
⊢ (Lim
𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ 𝐵)) |
| 3 | 2 | ralbidv 3155 |
. . . . . 6
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ 𝐵)) |
| 4 | 3 | biimpd 229 |
. . . . 5
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ 𝐵)) |
| 5 | | fvex 6835 |
. . . . . . . 8
⊢
(rank‘𝑥)
∈ V |
| 6 | 5 | sucex 7739 |
. . . . . . 7
⊢ suc
(rank‘𝑥) ∈
V |
| 7 | 6 | rgenw 3051 |
. . . . . 6
⊢
∀𝑥 ∈
𝐴 suc (rank‘𝑥) ∈ V |
| 8 | | uniiunlem 4037 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 suc (rank‘𝑥) ∈ V → (∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)) |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 suc (rank‘𝑥) ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵) |
| 10 | 4, 9 | imbitrdi 251 |
. . . 4
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵)) |
| 11 | 10 | impcom 407 |
. . 3
⊢
((∀𝑥 ∈
𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵) |
| 12 | 11 | adantl 481 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵) |
| 13 | | limord 6367 |
. . . 4
⊢ (Lim
𝐵 → Ord 𝐵) |
| 14 | | 0ellim 6370 |
. . . . 5
⊢ (Lim
𝐵 → ∅ ∈
𝐵) |
| 15 | 14 | ne0d 4292 |
. . . 4
⊢ (Lim
𝐵 → 𝐵 ≠ ∅) |
| 16 | 13, 15 | jca 511 |
. . 3
⊢ (Lim
𝐵 → (Ord 𝐵 ∧ 𝐵 ≠ ∅)) |
| 17 | 16 | ad2antll 729 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (Ord 𝐵 ∧ 𝐵 ≠ ∅)) |
| 18 | | rankval4b 35104 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 19 | 6 | dfiun2 4982 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} |
| 20 | 18, 19 | eqtrdi 2782 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) = ∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = suc (rank‘𝑥)}) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) →
(rank‘𝐴) = ∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = suc (rank‘𝑥)}) |
| 22 | 21 | 3ad2ant1 1133 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (rank‘𝐴) = ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)}) |
| 23 | | abrexfi 9236 |
. . . . 5
⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin) |
| 24 | | fissorduni 35096 |
. . . . 5
⊢ (({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → ∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵) |
| 25 | 23, 24 | syl3an1 1163 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → ∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵) |
| 26 | 25 | 3adant1r 1178 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → ∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = suc (rank‘𝑥)} ∈ 𝐵) |
| 27 | 22, 26 | eqeltrd 2831 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = suc (rank‘𝑥)} ⊆ 𝐵 ∧ (Ord 𝐵 ∧ 𝐵 ≠ ∅)) → (rank‘𝐴) ∈ 𝐵) |
| 28 | 1, 12, 17, 27 | syl3anc 1373 |
1
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵) |