MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppsssuppgd Structured version   Visualization version   GIF version

Theorem fsuppsssuppgd 9333
Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp 9332. (Contributed by SN, 6-Mar-2025.)
Hypotheses
Ref Expression
fsuppsssuppgd.g (𝜑𝐺𝑉)
fsuppsssuppgd.z (𝜑𝑍𝑊)
fsuppsssuppgd.1 (𝜑 → Fun 𝐺)
fsuppsssuppgd.2 (𝜑𝐹 finSupp 𝑂)
fsuppsssuppgd.3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
Assertion
Ref Expression
fsuppsssuppgd (𝜑𝐺 finSupp 𝑍)

Proof of Theorem fsuppsssuppgd
StepHypRef Expression
1 fsuppsssuppgd.g . 2 (𝜑𝐺𝑉)
2 fsuppsssuppgd.1 . 2 (𝜑 → Fun 𝐺)
3 fsuppsssuppgd.z . 2 (𝜑𝑍𝑊)
4 fsuppsssuppgd.2 . . 3 (𝜑𝐹 finSupp 𝑂)
54fsuppimpd 9320 . 2 (𝜑 → (𝐹 supp 𝑂) ∈ Fin)
6 fsuppsssuppgd.3 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
7 suppssfifsupp 9331 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ ((𝐹 supp 𝑂) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))) → 𝐺 finSupp 𝑍)
81, 2, 3, 5, 6, 7syl32anc 1380 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914   class class class wbr 5107  Fun wfun 6505  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  fsuppss  9334  fsuppssov1  9335  fisuppov1  32606  elrgspnlem1  33193  fldextrspunlsp  33669  evlsvvvallem  42549  evlsvvvallem2  42550  evlsvvval  42551  selvvvval  42573  evlselv  42575  mhphf  42585
  Copyright terms: Public domain W3C validator