| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppsssuppgd | Structured version Visualization version GIF version | ||
| Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp 9271. (Contributed by SN, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| fsuppsssuppgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| fsuppsssuppgd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppsssuppgd.1 | ⊢ (𝜑 → Fun 𝐺) |
| fsuppsssuppgd.2 | ⊢ (𝜑 → 𝐹 finSupp 𝑂) |
| fsuppsssuppgd.3 | ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂)) |
| Ref | Expression |
|---|---|
| fsuppsssuppgd | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppsssuppgd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 2 | fsuppsssuppgd.1 | . 2 ⊢ (𝜑 → Fun 𝐺) | |
| 3 | fsuppsssuppgd.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 4 | fsuppsssuppgd.2 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 𝑂) | |
| 5 | 4 | fsuppimpd 9259 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑂) ∈ Fin) |
| 6 | fsuppsssuppgd.3 | . 2 ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂)) | |
| 7 | suppssfifsupp 9270 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ ((𝐹 supp 𝑂) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))) → 𝐺 finSupp 𝑍) | |
| 8 | 1, 2, 3, 5, 6, 7 | syl32anc 1380 | 1 ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 Fun wfun 6476 (class class class)co 7349 supp csupp 8093 Fincfn 8872 finSupp cfsupp 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-1o 8388 df-en 8873 df-fin 8876 df-fsupp 9252 |
| This theorem is referenced by: fsuppss 9273 fsuppssov1 9274 fisuppov1 32625 elrgspnlem1 33182 fldextrspunlsp 33641 evlsvvvallem 42534 evlsvvvallem2 42535 evlsvvval 42536 selvvvval 42558 evlselv 42560 mhphf 42570 |
| Copyright terms: Public domain | W3C validator |