MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppsssuppgd Structured version   Visualization version   GIF version

Theorem fsuppsssuppgd 9272
Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp 9271. (Contributed by SN, 6-Mar-2025.)
Hypotheses
Ref Expression
fsuppsssuppgd.g (𝜑𝐺𝑉)
fsuppsssuppgd.z (𝜑𝑍𝑊)
fsuppsssuppgd.1 (𝜑 → Fun 𝐺)
fsuppsssuppgd.2 (𝜑𝐹 finSupp 𝑂)
fsuppsssuppgd.3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
Assertion
Ref Expression
fsuppsssuppgd (𝜑𝐺 finSupp 𝑍)

Proof of Theorem fsuppsssuppgd
StepHypRef Expression
1 fsuppsssuppgd.g . 2 (𝜑𝐺𝑉)
2 fsuppsssuppgd.1 . 2 (𝜑 → Fun 𝐺)
3 fsuppsssuppgd.z . 2 (𝜑𝑍𝑊)
4 fsuppsssuppgd.2 . . 3 (𝜑𝐹 finSupp 𝑂)
54fsuppimpd 9259 . 2 (𝜑 → (𝐹 supp 𝑂) ∈ Fin)
6 fsuppsssuppgd.3 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
7 suppssfifsupp 9270 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ ((𝐹 supp 𝑂) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))) → 𝐺 finSupp 𝑍)
81, 2, 3, 5, 6, 7syl32anc 1380 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3903   class class class wbr 5092  Fun wfun 6476  (class class class)co 7349   supp csupp 8093  Fincfn 8872   finSupp cfsupp 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876  df-fsupp 9252
This theorem is referenced by:  fsuppss  9273  fsuppssov1  9274  fisuppov1  32625  elrgspnlem1  33182  fldextrspunlsp  33641  evlsvvvallem  42534  evlsvvvallem2  42535  evlsvvval  42536  selvvvval  42558  evlselv  42560  mhphf  42570
  Copyright terms: Public domain W3C validator