MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppsssuppgd Structured version   Visualization version   GIF version

Theorem fsuppsssuppgd 9420
Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp 9419. (Contributed by SN, 6-Mar-2025.)
Hypotheses
Ref Expression
fsuppsssuppgd.g (𝜑𝐺𝑉)
fsuppsssuppgd.z (𝜑𝑍𝑊)
fsuppsssuppgd.1 (𝜑 → Fun 𝐺)
fsuppsssuppgd.2 (𝜑𝐹 finSupp 𝑂)
fsuppsssuppgd.3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
Assertion
Ref Expression
fsuppsssuppgd (𝜑𝐺 finSupp 𝑍)

Proof of Theorem fsuppsssuppgd
StepHypRef Expression
1 fsuppsssuppgd.g . 2 (𝜑𝐺𝑉)
2 fsuppsssuppgd.1 . 2 (𝜑 → Fun 𝐺)
3 fsuppsssuppgd.z . 2 (𝜑𝑍𝑊)
4 fsuppsssuppgd.2 . . 3 (𝜑𝐹 finSupp 𝑂)
54fsuppimpd 9407 . 2 (𝜑 → (𝐹 supp 𝑂) ∈ Fin)
6 fsuppsssuppgd.3 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))
7 suppssfifsupp 9418 . 2 (((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ ((𝐹 supp 𝑂) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑂))) → 𝐺 finSupp 𝑍)
81, 2, 3, 5, 6, 7syl32anc 1377 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3963   class class class wbr 5148  Fun wfun 6557  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  fsuppss  9421  fsuppssov1  9422  fisuppov1  32698  elrgspnlem1  33232  evlsvvvallem  42548  evlsvvvallem2  42549  evlsvvval  42550  selvvvval  42572  evlselv  42574  mhphf  42584
  Copyright terms: Public domain W3C validator