![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoend | Structured version Visualization version GIF version |
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoend | ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴..^𝐵)) | |
2 | elfzoel2 13628 | . . . . . 6 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ) | |
3 | fzoval 13630 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
5 | 1, 4 | eleqtrd 2827 | . . . 4 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴...(𝐵 − 1))) |
6 | elfzuz3 13495 | . . . 4 ⊢ (𝐴 ∈ (𝐴...(𝐵 − 1)) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) |
8 | eluzfz2 13506 | . . 3 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1))) |
10 | 9, 4 | eleqtrrd 2828 | 1 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 1c1 11107 − cmin 11441 ℤcz 12555 ℤ≥cuz 12819 ...cfz 13481 ..^cfzo 13624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-neg 11444 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 |
This theorem is referenced by: fzo0end 13721 ssfzo12 13722 lswccatn0lsw 14538 efgsdmi 19642 efgs1b 19646 clwlkclwwlklem2 29722 fzoopth 46520 |
Copyright terms: Public domain | W3C validator |