MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoend Structured version   Visualization version   GIF version

Theorem fzoend 13678
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoend (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))

Proof of Theorem fzoend
StepHypRef Expression
1 id 22 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴..^𝐵))
2 elfzoel2 13579 . . . . . 6 (𝐴 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ)
3 fzoval 13581 . . . . . 6 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
42, 3syl 17 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
51, 4eleqtrd 2830 . . . 4 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴...(𝐵 − 1)))
6 elfzuz3 13442 . . . 4 (𝐴 ∈ (𝐴...(𝐵 − 1)) → (𝐵 − 1) ∈ (ℤ𝐴))
75, 6syl 17 . . 3 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
8 eluzfz2 13453 . . 3 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
97, 8syl 17 . 2 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
109, 4eleqtrrd 2831 1 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  1c1 11029  cmin 11365  cz 12489  cuz 12753  ...cfz 13428  ..^cfzo 13575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-neg 11368  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576
This theorem is referenced by:  fzo0end  13679  ssfzo12  13680  fzoopth  13683  lswccatn0lsw  14516  efgsdmi  19629  efgs1b  19633  clwlkclwwlklem2  29962
  Copyright terms: Public domain W3C validator