| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoend | Structured version Visualization version GIF version | ||
| Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzoend | ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴..^𝐵)) | |
| 2 | elfzoel2 13579 | . . . . . 6 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ) | |
| 3 | fzoval 13581 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
| 5 | 1, 4 | eleqtrd 2830 | . . . 4 ⊢ (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴...(𝐵 − 1))) |
| 6 | elfzuz3 13442 | . . . 4 ⊢ (𝐴 ∈ (𝐴...(𝐵 − 1)) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) |
| 8 | eluzfz2 13453 | . . 3 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1))) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1))) |
| 10 | 9, 4 | eleqtrrd 2831 | 1 ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 1c1 11029 − cmin 11365 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-neg 11368 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: fzo0end 13679 ssfzo12 13680 fzoopth 13683 lswccatn0lsw 14516 efgsdmi 19629 efgs1b 19633 clwlkclwwlklem2 29962 |
| Copyright terms: Public domain | W3C validator |