MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoend Structured version   Visualization version   GIF version

Theorem fzoend 13478
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoend (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))

Proof of Theorem fzoend
StepHypRef Expression
1 id 22 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴..^𝐵))
2 elfzoel2 13386 . . . . . 6 (𝐴 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ)
3 fzoval 13388 . . . . . 6 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
42, 3syl 17 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
51, 4eleqtrd 2841 . . . 4 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴...(𝐵 − 1)))
6 elfzuz3 13253 . . . 4 (𝐴 ∈ (𝐴...(𝐵 − 1)) → (𝐵 − 1) ∈ (ℤ𝐴))
75, 6syl 17 . . 3 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
8 eluzfz2 13264 . . 3 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
97, 8syl 17 . 2 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
109, 4eleqtrrd 2842 1 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1c1 10872  cmin 11205  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  fzo0end  13479  ssfzo12  13480  lswccatn0lsw  14296  efgsdmi  19338  efgs1b  19342  clwlkclwwlklem2  28364  fzoopth  44819
  Copyright terms: Public domain W3C validator