MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoend Structured version   Visualization version   GIF version

Theorem fzoend 13121
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoend (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))

Proof of Theorem fzoend
StepHypRef Expression
1 id 22 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴..^𝐵))
2 elfzoel2 13030 . . . . . 6 (𝐴 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ)
3 fzoval 13032 . . . . . 6 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
42, 3syl 17 . . . . 5 (𝐴 ∈ (𝐴..^𝐵) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
51, 4eleqtrd 2919 . . . 4 (𝐴 ∈ (𝐴..^𝐵) → 𝐴 ∈ (𝐴...(𝐵 − 1)))
6 elfzuz3 12898 . . . 4 (𝐴 ∈ (𝐴...(𝐵 − 1)) → (𝐵 − 1) ∈ (ℤ𝐴))
75, 6syl 17 . . 3 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
8 eluzfz2 12908 . . 3 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
97, 8syl 17 . 2 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴...(𝐵 − 1)))
109, 4eleqtrrd 2920 1 (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  cfv 6351  (class class class)co 7151  1c1 10530  cmin 10862  cz 11973  cuz 12235  ...cfz 12885  ..^cfzo 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-neg 10865  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027
This theorem is referenced by:  fzo0end  13122  ssfzo12  13123  lswccatn0lsw  13938  efgsdmi  18780  efgs1b  18784  clwlkclwwlklem2  27692  fzoopth  43389
  Copyright terms: Public domain W3C validator