| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgsdmi | Structured version Visualization version GIF version | ||
| Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgsdmi | ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsval 19749 | . . 3 ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
| 9 | fveq2 6906 | . . . 4 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘𝑖) = (𝐹‘((♯‘𝐹) − 1))) | |
| 10 | fvoveq1 7454 | . . . . . 6 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘(𝑖 − 1)) = (𝐹‘(((♯‘𝐹) − 1) − 1))) | |
| 11 | 10 | fveq2d 6910 | . . . . 5 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝑇‘(𝐹‘(𝑖 − 1))) = (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 12 | 11 | rneqd 5949 | . . . 4 ⊢ (𝑖 = ((♯‘𝐹) − 1) → ran (𝑇‘(𝐹‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 13 | 9, 12 | eleq12d 2835 | . . 3 ⊢ (𝑖 = ((♯‘𝐹) − 1) → ((𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) ↔ (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))) |
| 14 | 1, 2, 3, 4, 5, 6 | efgsdm 19748 | . . . . 5 ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 15 | 14 | simp3bi 1148 | . . . 4 ⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ ℕ) | |
| 18 | nnuz 12921 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 19 | 17, 18 | eleqtrdi 2851 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (ℤ≥‘1)) |
| 20 | eluzfz1 13571 | . . . . . 6 ⊢ (((♯‘𝐹) − 1) ∈ (ℤ≥‘1) → 1 ∈ (1...((♯‘𝐹) − 1))) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1...((♯‘𝐹) − 1))) |
| 22 | 14 | simp1bi 1146 | . . . . . . . 8 ⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 23 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 24 | 23 | eldifad 3963 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ Word 𝑊) |
| 25 | lencl 14571 | . . . . . 6 ⊢ (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈ ℕ0) | |
| 26 | nn0z 12638 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
| 27 | fzoval 13700 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) | |
| 28 | 24, 25, 26, 27 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) |
| 29 | 21, 28 | eleqtrrd 2844 | . . . 4 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1..^(♯‘𝐹))) |
| 30 | fzoend 13796 | . . . 4 ⊢ (1 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹))) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹))) |
| 32 | 13, 16, 31 | rspcdva 3623 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 33 | 8, 32 | eqeltrd 2841 | 1 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∅c0 4333 {csn 4626 〈cop 4632 〈cotp 4634 ∪ ciun 4991 ↦ cmpt 5225 I cid 5577 × cxp 5683 dom cdm 5685 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8499 2oc2o 8500 0cc0 11155 1c1 11156 − cmin 11492 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 ..^cfzo 13694 ♯chash 14369 Word cword 14552 splice csplice 14787 〈“cs2 14880 ~FG cefg 19724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 |
| This theorem is referenced by: efgs1b 19754 efgredlemg 19760 efgredlemd 19762 efgredlem 19765 |
| Copyright terms: Public domain | W3C validator |