| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgsdmi | Structured version Visualization version GIF version | ||
| Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgsdmi | ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsval 19628 | . . 3 ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
| 9 | fveq2 6826 | . . . 4 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘𝑖) = (𝐹‘((♯‘𝐹) − 1))) | |
| 10 | fvoveq1 7376 | . . . . . 6 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘(𝑖 − 1)) = (𝐹‘(((♯‘𝐹) − 1) − 1))) | |
| 11 | 10 | fveq2d 6830 | . . . . 5 ⊢ (𝑖 = ((♯‘𝐹) − 1) → (𝑇‘(𝐹‘(𝑖 − 1))) = (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 12 | 11 | rneqd 5884 | . . . 4 ⊢ (𝑖 = ((♯‘𝐹) − 1) → ran (𝑇‘(𝐹‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 13 | 9, 12 | eleq12d 2822 | . . 3 ⊢ (𝑖 = ((♯‘𝐹) − 1) → ((𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) ↔ (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))) |
| 14 | 1, 2, 3, 4, 5, 6 | efgsdm 19627 | . . . . 5 ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 15 | 14 | simp3bi 1147 | . . . 4 ⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ ℕ) | |
| 18 | nnuz 12796 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 19 | 17, 18 | eleqtrdi 2838 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (ℤ≥‘1)) |
| 20 | eluzfz1 13452 | . . . . . 6 ⊢ (((♯‘𝐹) − 1) ∈ (ℤ≥‘1) → 1 ∈ (1...((♯‘𝐹) − 1))) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1...((♯‘𝐹) − 1))) |
| 22 | 14 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 23 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 24 | 23 | eldifad 3917 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ Word 𝑊) |
| 25 | lencl 14458 | . . . . . 6 ⊢ (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈ ℕ0) | |
| 26 | nn0z 12514 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
| 27 | fzoval 13581 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) | |
| 28 | 24, 25, 26, 27 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) |
| 29 | 21, 28 | eleqtrrd 2831 | . . . 4 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1..^(♯‘𝐹))) |
| 30 | fzoend 13678 | . . . 4 ⊢ (1 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹))) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹))) |
| 32 | 13, 16, 31 | rspcdva 3580 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| 33 | 8, 32 | eqeltrd 2828 | 1 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∖ cdif 3902 ∅c0 4286 {csn 4579 〈cop 4585 〈cotp 4587 ∪ ciun 4944 ↦ cmpt 5176 I cid 5517 × cxp 5621 dom cdm 5623 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1oc1o 8388 2oc2o 8389 0cc0 11028 1c1 11029 − cmin 11365 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 ..^cfzo 13575 ♯chash 14255 Word cword 14438 splice csplice 14673 〈“cs2 14766 ~FG cefg 19603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 |
| This theorem is referenced by: efgs1b 19633 efgredlemg 19639 efgredlemd 19641 efgredlem 19644 |
| Copyright terms: Public domain | W3C validator |