Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . 4
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | efgval.r |
. . . 4
β’ βΌ = (
~FG βπΌ) |
3 | | efgval2.m |
. . . 4
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
4 | | efgval2.t |
. . . 4
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
5 | | efgred.d |
. . . 4
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
6 | | efgred.s |
. . . 4
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsval 19636 |
. . 3
β’ (πΉ β dom π β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
8 | 7 | adantr 480 |
. 2
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
9 | | fveq2 6881 |
. . . 4
β’ (π = ((β―βπΉ) β 1) β (πΉβπ) = (πΉβ((β―βπΉ) β 1))) |
10 | | fvoveq1 7424 |
. . . . . 6
β’ (π = ((β―βπΉ) β 1) β (πΉβ(π β 1)) = (πΉβ(((β―βπΉ) β 1) β 1))) |
11 | 10 | fveq2d 6885 |
. . . . 5
β’ (π = ((β―βπΉ) β 1) β (πβ(πΉβ(π β 1))) = (πβ(πΉβ(((β―βπΉ) β 1) β 1)))) |
12 | 11 | rneqd 5927 |
. . . 4
β’ (π = ((β―βπΉ) β 1) β ran (πβ(πΉβ(π β 1))) = ran (πβ(πΉβ(((β―βπΉ) β 1) β 1)))) |
13 | 9, 12 | eleq12d 2819 |
. . 3
β’ (π = ((β―βπΉ) β 1) β ((πΉβπ) β ran (πβ(πΉβ(π β 1))) β (πΉβ((β―βπΉ) β 1)) β ran (πβ(πΉβ(((β―βπΉ) β 1) β 1))))) |
14 | 1, 2, 3, 4, 5, 6 | efgsdm 19635 |
. . . . 5
β’ (πΉ β dom π β (πΉ β (Word π β {β
}) β§ (πΉβ0) β π· β§ βπ β (1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
15 | 14 | simp3bi 1144 |
. . . 4
β’ (πΉ β dom π β βπ β (1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1)))) |
16 | 15 | adantr 480 |
. . 3
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β
βπ β
(1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1)))) |
17 | | simpr 484 |
. . . . . . 7
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β
((β―βπΉ) β
1) β β) |
18 | | nnuz 12861 |
. . . . . . 7
β’ β =
(β€β₯β1) |
19 | 17, 18 | eleqtrdi 2835 |
. . . . . 6
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β
((β―βπΉ) β
1) β (β€β₯β1)) |
20 | | eluzfz1 13504 |
. . . . . 6
β’
(((β―βπΉ)
β 1) β (β€β₯β1) β 1 β
(1...((β―βπΉ)
β 1))) |
21 | 19, 20 | syl 17 |
. . . . 5
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β 1 β
(1...((β―βπΉ)
β 1))) |
22 | 14 | simp1bi 1142 |
. . . . . . . 8
β’ (πΉ β dom π β πΉ β (Word π β {β
})) |
23 | 22 | adantr 480 |
. . . . . . 7
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β πΉ β (Word π β {β
})) |
24 | 23 | eldifad 3952 |
. . . . . 6
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β πΉ β Word π) |
25 | | lencl 14479 |
. . . . . 6
β’ (πΉ β Word π β (β―βπΉ) β
β0) |
26 | | nn0z 12579 |
. . . . . 6
β’
((β―βπΉ)
β β0 β (β―βπΉ) β β€) |
27 | | fzoval 13629 |
. . . . . 6
β’
((β―βπΉ)
β β€ β (1..^(β―βπΉ)) = (1...((β―βπΉ) β 1))) |
28 | 24, 25, 26, 27 | 4syl 19 |
. . . . 5
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β
(1..^(β―βπΉ)) =
(1...((β―βπΉ)
β 1))) |
29 | 21, 28 | eleqtrrd 2828 |
. . . 4
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β 1 β
(1..^(β―βπΉ))) |
30 | | fzoend 13719 |
. . . 4
β’ (1 β
(1..^(β―βπΉ))
β ((β―βπΉ)
β 1) β (1..^(β―βπΉ))) |
31 | 29, 30 | syl 17 |
. . 3
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β
((β―βπΉ) β
1) β (1..^(β―βπΉ))) |
32 | 13, 16, 31 | rspcdva 3605 |
. 2
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β (πΉβ((β―βπΉ) β 1)) β ran (πβ(πΉβ(((β―βπΉ) β 1) β 1)))) |
33 | 8, 32 | eqeltrd 2825 |
1
β’ ((πΉ β dom π β§ ((β―βπΉ) β 1) β β) β (πβπΉ) β ran (πβ(πΉβ(((β―βπΉ) β 1) β 1)))) |