Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdmi Structured version   Visualization version   GIF version

Theorem efgsdmi 18836
 Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsdmi ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsdmi
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 18835 . . 3 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
87adantr 484 . 2 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9 fveq2 6643 . . . 4 (𝑖 = ((♯‘𝐹) − 1) → (𝐹𝑖) = (𝐹‘((♯‘𝐹) − 1)))
10 fvoveq1 7153 . . . . . 6 (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘(𝑖 − 1)) = (𝐹‘(((♯‘𝐹) − 1) − 1)))
1110fveq2d 6647 . . . . 5 (𝑖 = ((♯‘𝐹) − 1) → (𝑇‘(𝐹‘(𝑖 − 1))) = (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
1211rneqd 5781 . . . 4 (𝑖 = ((♯‘𝐹) − 1) → ran (𝑇‘(𝐹‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
139, 12eleq12d 2906 . . 3 (𝑖 = ((♯‘𝐹) − 1) → ((𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) ↔ (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))))
141, 2, 3, 4, 5, 6efgsdm 18834 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
1514simp3bi 1144 . . . 4 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
1615adantr 484 . . 3 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
17 simpr 488 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ ℕ)
18 nnuz 12259 . . . . . . 7 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2922 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (ℤ‘1))
20 eluzfz1 12897 . . . . . 6 (((♯‘𝐹) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((♯‘𝐹) − 1)))
2119, 20syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1...((♯‘𝐹) − 1)))
2214simp1bi 1142 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
2322adantr 484 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
2423eldifad 3922 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ Word 𝑊)
25 lencl 13864 . . . . . 6 (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈ ℕ0)
26 nn0z 11983 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
27 fzoval 13022 . . . . . 6 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2824, 25, 26, 274syl 19 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2921, 28eleqtrrd 2915 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1..^(♯‘𝐹)))
30 fzoend 13111 . . . 4 (1 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹)))
3129, 30syl 17 . . 3 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹)))
3213, 16, 31rspcdva 3602 . 2 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
338, 32eqeltrd 2912 1 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126  {crab 3130   ∖ cdif 3907  ∅c0 4266  {csn 4540  ⟨cop 4546  ⟨cotp 4548  ∪ ciun 4892   ↦ cmpt 5119   I cid 5432   × cxp 5526  dom cdm 5528  ran crn 5529  ‘cfv 6328  (class class class)co 7130   ∈ cmpo 7132  1oc1o 8070  2oc2o 8071  0cc0 10514  1c1 10515   − cmin 10847  ℕcn 11615  ℕ0cn0 11875  ℤcz 11959  ℤ≥cuz 12221  ...cfz 12875  ..^cfzo 13016  ♯chash 13674  Word cword 13845   splice csplice 14090  ⟨“cs2 14182   ~FG cefg 18810 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846 This theorem is referenced by:  efgs1b  18840  efgredlemg  18846  efgredlemd  18848  efgredlem  18851
 Copyright terms: Public domain W3C validator