MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccatn0lsw Structured version   Visualization version   GIF version

Theorem lswccatn0lsw 14639
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 14623 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
21oveq1d 7463 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
323adant3 1132 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
4 lencl 14581 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
54nn0zd 12665 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
6 lennncl 14582 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
7 simpl 482 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
8 nnz 12660 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ)
9 zaddcl 12683 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
108, 9sylan2 592 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
11 zre 12643 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
12 nnrp 13068 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ+)
13 ltaddrp 13094 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ+) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
1411, 12, 13syl2an 595 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
157, 10, 143jca 1128 . . . . . . . . 9 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
165, 6, 15syl2an 595 . . . . . . . 8 ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
17163impb 1115 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
18 fzolb 13722 . . . . . . 7 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1917, 18sylibr 234 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
20 fzoend 13807 . . . . . 6 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
223, 21eqeltrd 2844 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
23 ccatval2 14626 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
2422, 23syld3an3 1409 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
252oveq1d 7463 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)))
264nn0cnd 12615 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
27 lencl 14581 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2827nn0cnd 12615 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
29 addcl 11266 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℂ)
30 1cnd 11285 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → 1 ∈ ℂ)
31 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (♯‘𝐴) ∈ ℂ)
3229, 30, 31sub32d 11679 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1))
33 pncan2 11543 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) = (♯‘𝐵))
3433oveq1d 7463 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1) = ((♯‘𝐵) − 1))
3532, 34eqtrd 2780 . . . . . . 7 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3626, 28, 35syl2an 595 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3725, 36eqtrd 2780 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
38373adant3 1132 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3938fveq2d 6924 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))) = (𝐵‘((♯‘𝐵) − 1)))
4024, 39eqtrd 2780 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘((♯‘𝐵) − 1)))
41 ovex 7481 . . 3 (𝐴 ++ 𝐵) ∈ V
42 lsw 14612 . . 3 ((𝐴 ++ 𝐵) ∈ V → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
4341, 42mp1i 13 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
44 lsw 14612 . . 3 (𝐵 ∈ Word 𝑉 → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
45443ad2ant2 1134 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
4640, 43, 453eqtr4d 2790 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  cz 12639  +crp 13057  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   ++ cconcat 14618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619
This theorem is referenced by:  lswccats1  14682  clwwlkccat  30022
  Copyright terms: Public domain W3C validator