MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccatn0lsw Structured version   Visualization version   GIF version

Theorem lswccatn0lsw 14609
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 14593 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
21oveq1d 7420 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
323adant3 1132 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
4 lencl 14551 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
54nn0zd 12614 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
6 lennncl 14552 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
7 simpl 482 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
8 nnz 12609 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ)
9 zaddcl 12632 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
108, 9sylan2 593 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
11 zre 12592 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
12 nnrp 13020 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ+)
13 ltaddrp 13046 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ+) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
1411, 12, 13syl2an 596 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
157, 10, 143jca 1128 . . . . . . . . 9 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
165, 6, 15syl2an 596 . . . . . . . 8 ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
17163impb 1114 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
18 fzolb 13682 . . . . . . 7 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1917, 18sylibr 234 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
20 fzoend 13773 . . . . . 6 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
223, 21eqeltrd 2834 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
23 ccatval2 14596 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
2422, 23syld3an3 1411 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
252oveq1d 7420 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)))
264nn0cnd 12564 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
27 lencl 14551 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2827nn0cnd 12564 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
29 addcl 11211 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℂ)
30 1cnd 11230 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → 1 ∈ ℂ)
31 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (♯‘𝐴) ∈ ℂ)
3229, 30, 31sub32d 11626 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1))
33 pncan2 11489 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) = (♯‘𝐵))
3433oveq1d 7420 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1) = ((♯‘𝐵) − 1))
3532, 34eqtrd 2770 . . . . . . 7 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3626, 28, 35syl2an 596 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3725, 36eqtrd 2770 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
38373adant3 1132 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3938fveq2d 6880 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))) = (𝐵‘((♯‘𝐵) − 1)))
4024, 39eqtrd 2770 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘((♯‘𝐵) − 1)))
41 ovex 7438 . . 3 (𝐴 ++ 𝐵) ∈ V
42 lsw 14582 . . 3 ((𝐴 ++ 𝐵) ∈ V → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
4341, 42mp1i 13 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
44 lsw 14582 . . 3 (𝐵 ∈ Word 𝑉 → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
45443ad2ant2 1134 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
4640, 43, 453eqtr4d 2780 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  1c1 11130   + caddc 11132   < clt 11269  cmin 11466  cn 12240  cz 12588  +crp 13008  ..^cfzo 13671  chash 14348  Word cword 14531  lastSclsw 14580   ++ cconcat 14588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589
This theorem is referenced by:  lswccats1  14652  clwwlkccat  29971
  Copyright terms: Public domain W3C validator