MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccatn0lsw Structured version   Visualization version   GIF version

Theorem lswccatn0lsw 14537
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (lastSβ€˜(𝐴 ++ 𝐡)) = (lastSβ€˜π΅))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 14521 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉) β†’ (β™―β€˜(𝐴 ++ 𝐡)) = ((β™―β€˜π΄) + (β™―β€˜π΅)))
21oveq1d 7420 . . . . . 6 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉) β†’ ((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) = (((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1))
323adant3 1132 . . . . 5 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ ((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) = (((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1))
4 lencl 14479 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 β†’ (β™―β€˜π΄) ∈ β„•0)
54nn0zd 12580 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 β†’ (β™―β€˜π΄) ∈ β„€)
6 lennncl 14480 . . . . . . . . 9 ((𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (β™―β€˜π΅) ∈ β„•)
7 simpl 483 . . . . . . . . . 10 (((β™―β€˜π΄) ∈ β„€ ∧ (β™―β€˜π΅) ∈ β„•) β†’ (β™―β€˜π΄) ∈ β„€)
8 nnz 12575 . . . . . . . . . . 11 ((β™―β€˜π΅) ∈ β„• β†’ (β™―β€˜π΅) ∈ β„€)
9 zaddcl 12598 . . . . . . . . . . 11 (((β™―β€˜π΄) ∈ β„€ ∧ (β™―β€˜π΅) ∈ β„€) β†’ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€)
108, 9sylan2 593 . . . . . . . . . 10 (((β™―β€˜π΄) ∈ β„€ ∧ (β™―β€˜π΅) ∈ β„•) β†’ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€)
11 zre 12558 . . . . . . . . . . 11 ((β™―β€˜π΄) ∈ β„€ β†’ (β™―β€˜π΄) ∈ ℝ)
12 nnrp 12981 . . . . . . . . . . 11 ((β™―β€˜π΅) ∈ β„• β†’ (β™―β€˜π΅) ∈ ℝ+)
13 ltaddrp 13007 . . . . . . . . . . 11 (((β™―β€˜π΄) ∈ ℝ ∧ (β™―β€˜π΅) ∈ ℝ+) β†’ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅)))
1411, 12, 13syl2an 596 . . . . . . . . . 10 (((β™―β€˜π΄) ∈ β„€ ∧ (β™―β€˜π΅) ∈ β„•) β†’ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅)))
157, 10, 143jca 1128 . . . . . . . . 9 (((β™―β€˜π΄) ∈ β„€ ∧ (β™―β€˜π΅) ∈ β„•) β†’ ((β™―β€˜π΄) ∈ β„€ ∧ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€ ∧ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅))))
165, 6, 15syl2an 596 . . . . . . . 8 ((𝐴 ∈ Word 𝑉 ∧ (𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…)) β†’ ((β™―β€˜π΄) ∈ β„€ ∧ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€ ∧ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅))))
17163impb 1115 . . . . . . 7 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ ((β™―β€˜π΄) ∈ β„€ ∧ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€ ∧ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅))))
18 fzolb 13634 . . . . . . 7 ((β™―β€˜π΄) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))) ↔ ((β™―β€˜π΄) ∈ β„€ ∧ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„€ ∧ (β™―β€˜π΄) < ((β™―β€˜π΄) + (β™―β€˜π΅))))
1917, 18sylibr 233 . . . . . 6 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (β™―β€˜π΄) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))))
20 fzoend 13719 . . . . . 6 ((β™―β€˜π΄) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))) β†’ (((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))))
223, 21eqeltrd 2833 . . . 4 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ ((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅))))
23 ccatval2 14524 . . . 4 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ ((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) ∈ ((β™―β€˜π΄)..^((β™―β€˜π΄) + (β™―β€˜π΅)))) β†’ ((𝐴 ++ 𝐡)β€˜((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1)) = (π΅β€˜(((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄))))
2422, 23syld3an3 1409 . . 3 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ ((𝐴 ++ 𝐡)β€˜((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1)) = (π΅β€˜(((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄))))
252oveq1d 7420 . . . . . 6 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉) β†’ (((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) βˆ’ (β™―β€˜π΄)))
264nn0cnd 12530 . . . . . . 7 (𝐴 ∈ Word 𝑉 β†’ (β™―β€˜π΄) ∈ β„‚)
27 lencl 14479 . . . . . . . 8 (𝐡 ∈ Word 𝑉 β†’ (β™―β€˜π΅) ∈ β„•0)
2827nn0cnd 12530 . . . . . . 7 (𝐡 ∈ Word 𝑉 β†’ (β™―β€˜π΅) ∈ β„‚)
29 addcl 11188 . . . . . . . . 9 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ ((β™―β€˜π΄) + (β™―β€˜π΅)) ∈ β„‚)
30 1cnd 11205 . . . . . . . . 9 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ 1 ∈ β„‚)
31 simpl 483 . . . . . . . . 9 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ (β™―β€˜π΄) ∈ β„‚)
3229, 30, 31sub32d 11599 . . . . . . . 8 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ (β™―β€˜π΄)) βˆ’ 1))
33 pncan2 11463 . . . . . . . . 9 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ (((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ (β™―β€˜π΄)) = (β™―β€˜π΅))
3433oveq1d 7420 . . . . . . . 8 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ (β™―β€˜π΄)) βˆ’ 1) = ((β™―β€˜π΅) βˆ’ 1))
3532, 34eqtrd 2772 . . . . . . 7 (((β™―β€˜π΄) ∈ β„‚ ∧ (β™―β€˜π΅) ∈ β„‚) β†’ ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((β™―β€˜π΅) βˆ’ 1))
3626, 28, 35syl2an 596 . . . . . 6 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉) β†’ ((((β™―β€˜π΄) + (β™―β€˜π΅)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((β™―β€˜π΅) βˆ’ 1))
3725, 36eqtrd 2772 . . . . 5 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉) β†’ (((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((β™―β€˜π΅) βˆ’ 1))
38373adant3 1132 . . . 4 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄)) = ((β™―β€˜π΅) βˆ’ 1))
3938fveq2d 6892 . . 3 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (π΅β€˜(((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1) βˆ’ (β™―β€˜π΄))) = (π΅β€˜((β™―β€˜π΅) βˆ’ 1)))
4024, 39eqtrd 2772 . 2 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ ((𝐴 ++ 𝐡)β€˜((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1)) = (π΅β€˜((β™―β€˜π΅) βˆ’ 1)))
41 ovex 7438 . . 3 (𝐴 ++ 𝐡) ∈ V
42 lsw 14510 . . 3 ((𝐴 ++ 𝐡) ∈ V β†’ (lastSβ€˜(𝐴 ++ 𝐡)) = ((𝐴 ++ 𝐡)β€˜((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1)))
4341, 42mp1i 13 . 2 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (lastSβ€˜(𝐴 ++ 𝐡)) = ((𝐴 ++ 𝐡)β€˜((β™―β€˜(𝐴 ++ 𝐡)) βˆ’ 1)))
44 lsw 14510 . . 3 (𝐡 ∈ Word 𝑉 β†’ (lastSβ€˜π΅) = (π΅β€˜((β™―β€˜π΅) βˆ’ 1)))
45443ad2ant2 1134 . 2 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (lastSβ€˜π΅) = (π΅β€˜((β™―β€˜π΅) βˆ’ 1)))
4640, 43, 453eqtr4d 2782 1 ((𝐴 ∈ Word 𝑉 ∧ 𝐡 ∈ Word 𝑉 ∧ 𝐡 β‰  βˆ…) β†’ (lastSβ€˜(𝐴 ++ 𝐡)) = (lastSβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  1c1 11107   + caddc 11109   < clt 11244   βˆ’ cmin 11440  β„•cn 12208  β„€cz 12554  β„+crp 12970  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517
This theorem is referenced by:  lswccats1  14580  clwwlkccat  29232
  Copyright terms: Public domain W3C validator