MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccatn0lsw Structured version   Visualization version   GIF version

Theorem lswccatn0lsw 13936
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ccatlen 13918 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
21oveq1d 7150 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
323adant3 1129 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
4 lencl 13876 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
54nn0zd 12073 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
6 lennncl 13877 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
7 simpl 486 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
8 nnz 11992 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ)
9 zaddcl 12010 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
108, 9sylan2 595 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
11 zre 11973 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
12 nnrp 12388 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ+)
13 ltaddrp 12414 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ+) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
1411, 12, 13syl2an 598 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
157, 10, 143jca 1125 . . . . . . . . 9 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
165, 6, 15syl2an 598 . . . . . . . 8 ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
17163impb 1112 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
18 fzolb 13039 . . . . . . 7 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1917, 18sylibr 237 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
20 fzoend 13123 . . . . . 6 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
223, 21eqeltrd 2890 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
23 ccatval2 13923 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
2422, 23syld3an3 1406 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
252oveq1d 7150 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)))
264nn0cnd 11945 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
27 lencl 13876 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2827nn0cnd 11945 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
29 addcl 10608 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℂ)
30 1cnd 10625 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → 1 ∈ ℂ)
31 simpl 486 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (♯‘𝐴) ∈ ℂ)
3229, 30, 31sub32d 11018 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1))
33 pncan2 10882 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) = (♯‘𝐵))
3433oveq1d 7150 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1) = ((♯‘𝐵) − 1))
3532, 34eqtrd 2833 . . . . . . 7 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3626, 28, 35syl2an 598 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3725, 36eqtrd 2833 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
38373adant3 1129 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
3938fveq2d 6649 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))) = (𝐵‘((♯‘𝐵) − 1)))
4024, 39eqtrd 2833 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘((♯‘𝐵) − 1)))
41 ovex 7168 . . 3 (𝐴 ++ 𝐵) ∈ V
42 lsw 13907 . . 3 ((𝐴 ++ 𝐵) ∈ V → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
4341, 42mp1i 13 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
44 lsw 13907 . . 3 (𝐵 ∈ Word 𝑉 → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
45443ad2ant2 1131 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
4640, 43, 453eqtr4d 2843 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cmin 10859  cn 11625  cz 11969  +crp 12377  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   ++ cconcat 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914
This theorem is referenced by:  lswccats1  13984  clwwlkccat  27775
  Copyright terms: Public domain W3C validator