MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plpv Structured version   Visualization version   GIF version

Theorem plpv 10794
Description: Value of addition on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
plpv ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 +Q 𝑧)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem plpv
Dummy variables 𝑓 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 10767 . 2 +P = (𝑢P, 𝑣P ↦ {𝑓 ∣ ∃𝑔𝑢𝑣 𝑓 = (𝑔 +Q )})
2 addclnq 10729 . 2 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
31, 2genpv 10783 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 +Q 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  {cab 2710  wrex 3068  (class class class)co 7295   +Q cplq 10639  Pcnp 10643   +P cpp 10645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-oadd 8321  df-omul 8322  df-er 8518  df-ni 10656  df-pli 10657  df-mi 10658  df-lti 10659  df-plpq 10692  df-enq 10695  df-nq 10696  df-erq 10697  df-plq 10698  df-1nq 10700  df-np 10765  df-plp 10767
This theorem is referenced by:  addcompr  10805
  Copyright terms: Public domain W3C validator