![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resghm2b | Structured version Visualization version GIF version |
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
resghm2.u | β’ π = (π βΎs π) |
Ref | Expression |
---|---|
resghm2b | β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19093 | . . 3 β’ (πΉ β (π GrpHom π) β π β Grp) | |
2 | 1 | a1i 11 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β π β Grp)) |
3 | ghmgrp1 19093 | . . 3 β’ (πΉ β (π GrpHom π) β π β Grp) | |
4 | 3 | a1i 11 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β π β Grp)) |
5 | subgsubm 19027 | . . . . . 6 β’ (π β (SubGrpβπ) β π β (SubMndβπ)) | |
6 | resghm2.u | . . . . . . 7 β’ π = (π βΎs π) | |
7 | 6 | resmhm2b 18702 | . . . . . 6 β’ ((π β (SubMndβπ) β§ ran πΉ β π) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
8 | 5, 7 | sylan 580 | . . . . 5 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
9 | 8 | adantl 482 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
10 | subgrcl 19010 | . . . . . . 7 β’ (π β (SubGrpβπ) β π β Grp) | |
11 | 10 | adantr 481 | . . . . . 6 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β π β Grp) |
12 | ghmmhmb 19102 | . . . . . 6 β’ ((π β Grp β§ π β Grp) β (π GrpHom π) = (π MndHom π)) | |
13 | 11, 12 | sylan2 593 | . . . . 5 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (π GrpHom π) = (π MndHom π)) |
14 | 13 | eleq2d 2819 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π MndHom π))) |
15 | 6 | subggrp 19008 | . . . . . . 7 β’ (π β (SubGrpβπ) β π β Grp) |
16 | 15 | adantr 481 | . . . . . 6 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β π β Grp) |
17 | ghmmhmb 19102 | . . . . . 6 β’ ((π β Grp β§ π β Grp) β (π GrpHom π) = (π MndHom π)) | |
18 | 16, 17 | sylan2 593 | . . . . 5 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (π GrpHom π) = (π MndHom π)) |
19 | 18 | eleq2d 2819 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π MndHom π))) |
20 | 9, 14, 19 | 3bitr4d 310 | . . 3 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
21 | 20 | expcom 414 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (π β Grp β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π)))) |
22 | 2, 4, 21 | pm5.21ndd 380 | 1 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 ran crn 5677 βcfv 6543 (class class class)co 7408 βΎs cress 17172 MndHom cmhm 18668 SubMndcsubmnd 18669 Grpcgrp 18818 SubGrpcsubg 18999 GrpHom cghm 19088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-subg 19002 df-ghm 19089 |
This theorem is referenced by: ghmghmrn 19110 cayley 19281 pj1ghm2 19571 dpjghm2 19933 resrhm2b 20348 reslmhm2b 20664 m2cpmghm 22245 |
Copyright terms: Public domain | W3C validator |