![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resghm2b | Structured version Visualization version GIF version |
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
resghm2.u | β’ π = (π βΎs π) |
Ref | Expression |
---|---|
resghm2b | β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19179 | . . 3 β’ (πΉ β (π GrpHom π) β π β Grp) | |
2 | 1 | a1i 11 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β π β Grp)) |
3 | ghmgrp1 19179 | . . 3 β’ (πΉ β (π GrpHom π) β π β Grp) | |
4 | 3 | a1i 11 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β π β Grp)) |
5 | subgsubm 19110 | . . . . . 6 β’ (π β (SubGrpβπ) β π β (SubMndβπ)) | |
6 | resghm2.u | . . . . . . 7 β’ π = (π βΎs π) | |
7 | 6 | resmhm2b 18781 | . . . . . 6 β’ ((π β (SubMndβπ) β§ ran πΉ β π) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
8 | 5, 7 | sylan 578 | . . . . 5 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
9 | 8 | adantl 480 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π MndHom π) β πΉ β (π MndHom π))) |
10 | subgrcl 19093 | . . . . . . 7 β’ (π β (SubGrpβπ) β π β Grp) | |
11 | 10 | adantr 479 | . . . . . 6 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β π β Grp) |
12 | ghmmhmb 19188 | . . . . . 6 β’ ((π β Grp β§ π β Grp) β (π GrpHom π) = (π MndHom π)) | |
13 | 11, 12 | sylan2 591 | . . . . 5 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (π GrpHom π) = (π MndHom π)) |
14 | 13 | eleq2d 2815 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π MndHom π))) |
15 | 6 | subggrp 19091 | . . . . . . 7 β’ (π β (SubGrpβπ) β π β Grp) |
16 | 15 | adantr 479 | . . . . . 6 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β π β Grp) |
17 | ghmmhmb 19188 | . . . . . 6 β’ ((π β Grp β§ π β Grp) β (π GrpHom π) = (π MndHom π)) | |
18 | 16, 17 | sylan2 591 | . . . . 5 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (π GrpHom π) = (π MndHom π)) |
19 | 18 | eleq2d 2815 | . . . 4 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π MndHom π))) |
20 | 9, 14, 19 | 3bitr4d 310 | . . 3 β’ ((π β Grp β§ (π β (SubGrpβπ) β§ ran πΉ β π)) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
21 | 20 | expcom 412 | . 2 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (π β Grp β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π)))) |
22 | 2, 4, 21 | pm5.21ndd 378 | 1 β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3949 ran crn 5683 βcfv 6553 (class class class)co 7426 βΎs cress 17216 MndHom cmhm 18745 SubMndcsubmnd 18746 Grpcgrp 18897 SubGrpcsubg 19082 GrpHom cghm 19174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-subg 19085 df-ghm 19175 |
This theorem is referenced by: ghmghmrn 19196 cayley 19376 pj1ghm2 19666 dpjghm2 20028 resrhm2b 20548 reslmhm2b 20946 m2cpmghm 22666 |
Copyright terms: Public domain | W3C validator |