![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resghm2b | Structured version Visualization version GIF version |
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
resghm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
Ref | Expression |
---|---|
resghm2b | ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19249 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)) |
3 | ghmgrp1 19249 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp) | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp)) |
5 | subgsubm 19179 | . . . . . 6 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇)) | |
6 | resghm2.u | . . . . . . 7 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
7 | 6 | resmhm2b 18848 | . . . . . 6 ⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
10 | subgrcl 19162 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑇 ∈ Grp) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑇 ∈ Grp) |
12 | ghmmhmb 19258 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
14 | 13 | eleq2d 2825 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑇))) |
15 | 6 | subggrp 19160 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘𝑇) → 𝑈 ∈ Grp) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑈 ∈ Grp) |
17 | ghmmhmb 19258 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) | |
18 | 16, 17 | sylan2 593 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) |
19 | 18 | eleq2d 2825 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑈) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |
20 | 9, 14, 19 | 3bitr4d 311 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
21 | 20 | expcom 413 | . 2 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Grp → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))) |
22 | 2, 4, 21 | pm5.21ndd 379 | 1 ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ↾s cress 17274 MndHom cmhm 18807 SubMndcsubmnd 18808 Grpcgrp 18964 SubGrpcsubg 19151 GrpHom cghm 19243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-subg 19154 df-ghm 19244 |
This theorem is referenced by: ghmghmrn 19266 cayley 19447 pj1ghm2 19737 dpjghm2 20099 resrhm2b 20619 reslmhm2b 21071 m2cpmghm 22766 |
Copyright terms: Public domain | W3C validator |