MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0snghm Structured version   Visualization version   GIF version

Theorem c0snghm 20429
Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snghm ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snghm
StepHypRef Expression
1 grpmnd 18928 . . 3 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
2 grpmnd 18928 . . 3 (𝑇 ∈ Grp → 𝑇 ∈ Mnd)
3 id 22 . . 3 (𝐵 = {𝑍} → 𝐵 = {𝑍})
4 zrrhm.b . . . 4 𝐵 = (Base‘𝑇)
5 zrrhm.0 . . . 4 0 = (0g𝑆)
6 zrrhm.h . . . 4 𝐻 = (𝑥𝐵0 )
7 c0snmhm.z . . . 4 𝑍 = (0g𝑇)
84, 5, 6, 7c0snmhm 20428 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
91, 2, 3, 8syl3an 1160 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
10 ghmmhmb 19215 . . . . 5 ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑇 GrpHom 𝑆) = (𝑇 MndHom 𝑆))
1110eleq2d 2821 . . . 4 ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
1211ancoms 458 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
13123adant3 1132 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
149, 13mpbird 257 1 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4606  cmpt 5206  cfv 6536  (class class class)co 7410  Basecbs 17233  0gc0g 17458  Mndcmnd 18717   MndHom cmhm 18764  Grpcgrp 18921   GrpHom cghm 19200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-0g 17460  df-mgm 18623  df-mgmhm 18675  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-ghm 19201
This theorem is referenced by:  zrrnghm  20501
  Copyright terms: Public domain W3C validator