|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > c0snghm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) | 
| zrrhm.0 | ⊢ 0 = (0g‘𝑆) | 
| zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | 
| c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) | 
| Ref | Expression | 
|---|---|
| c0snghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpmnd 18958 | . . 3 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
| 2 | grpmnd 18958 | . . 3 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
| 3 | id 22 | . . 3 ⊢ (𝐵 = {𝑍} → 𝐵 = {𝑍}) | |
| 4 | zrrhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 5 | zrrhm.0 | . . . 4 ⊢ 0 = (0g‘𝑆) | |
| 6 | zrrhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 7 | c0snmhm.z | . . . 4 ⊢ 𝑍 = (0g‘𝑇) | |
| 8 | 4, 5, 6, 7 | c0snmhm 20463 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | 
| 9 | 1, 2, 3, 8 | syl3an 1161 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | 
| 10 | ghmmhmb 19245 | . . . . 5 ⊢ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑇 GrpHom 𝑆) = (𝑇 MndHom 𝑆)) | |
| 11 | 10 | eleq2d 2827 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆))) | 
| 12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆))) | 
| 13 | 12 | 3adant3 1133 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆))) | 
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {csn 4626 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 0gc0g 17484 Mndcmnd 18747 MndHom cmhm 18794 Grpcgrp 18951 GrpHom cghm 19230 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-0g 17486 df-mgm 18653 df-mgmhm 18705 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-ghm 19231 | 
| This theorem is referenced by: zrrnghm 20536 | 
| Copyright terms: Public domain | W3C validator |