Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snghm Structured version   Visualization version   GIF version

Theorem c0snghm 45362
Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snghm ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snghm
StepHypRef Expression
1 grpmnd 18499 . . 3 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
2 grpmnd 18499 . . 3 (𝑇 ∈ Grp → 𝑇 ∈ Mnd)
3 id 22 . . 3 (𝐵 = {𝑍} → 𝐵 = {𝑍})
4 zrrhm.b . . . 4 𝐵 = (Base‘𝑇)
5 zrrhm.0 . . . 4 0 = (0g𝑆)
6 zrrhm.h . . . 4 𝐻 = (𝑥𝐵0 )
7 c0snmhm.z . . . 4 𝑍 = (0g𝑇)
84, 5, 6, 7c0snmhm 45361 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
91, 2, 3, 8syl3an 1158 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
10 ghmmhmb 18760 . . . . 5 ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑇 GrpHom 𝑆) = (𝑇 MndHom 𝑆))
1110eleq2d 2824 . . . 4 ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
1211ancoms 458 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
13123adant3 1130 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ↔ 𝐻 ∈ (𝑇 MndHom 𝑆)))
149, 13mpbird 256 1 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343  Grpcgrp 18492   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-ghm 18747  df-mgmhm 45221
This theorem is referenced by:  zrrnghm  45363
  Copyright terms: Public domain W3C validator