Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatj32 Structured version   Visualization version   GIF version

Theorem hlatj32 36948
Description: Swap 2nd and 3rd members of lattice join. Frequently-used special case of latj32 17773 for atoms. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatj32 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))

Proof of Theorem hlatj32
StepHypRef Expression
1 hllat 36939 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21adantr 484 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
3 simpr1 1191 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
4 eqid 2758 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 hlatjcom.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 36865 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
8 simpr2 1192 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
94, 5atbase 36865 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
11 simpr3 1193 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
124, 5atbase 36865 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
14 hlatjcom.j . . 3 = (join‘𝐾)
154, 14latj32 17773 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
162, 7, 10, 13, 15syl13anc 1369 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150  Basecbs 16541  joincjn 17620  Latclat 17721  Atomscatm 36839  HLchlt 36926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17604  df-poset 17622  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-lat 17722  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927
This theorem is referenced by:  hlatjrot  36949  ps-2  37054  3atlem2  37060  3atlem6  37064  4atlem3b  37174  4atlem11  37185  2lplnja  37195  dalawlem5  37451  dalawlem7  37453  cdleme9  37829  cdleme20aN  37885  cdleme22e  37920  cdleme22eALTN  37921  dia2dimlem3  38642
  Copyright terms: Public domain W3C validator