| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjassi | Structured version Visualization version GIF version | ||
| Description: Associative law for Hilbert lattice join. From definition of lattice in [Kalmbach] p. 14. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| chjass.3 | ⊢ 𝐶 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chjassi | ⊢ ((𝐴 ∨ℋ 𝐵) ∨ℋ 𝐶) = (𝐴 ∨ℋ (𝐵 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4176 | . . . 4 ⊢ (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∩ (⊥‘𝐶)) = ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) | |
| 2 | ch0le.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
| 3 | chjcl.2 | . . . . . 6 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 2, 3 | chdmj1i 31451 | . . . . 5 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)) |
| 5 | 4 | ineq1i 4164 | . . . 4 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∩ (⊥‘𝐶)) = (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∩ (⊥‘𝐶)) |
| 6 | chjass.3 | . . . . . 6 ⊢ 𝐶 ∈ Cℋ | |
| 7 | 3, 6 | chdmj1i 31451 | . . . . 5 ⊢ (⊥‘(𝐵 ∨ℋ 𝐶)) = ((⊥‘𝐵) ∩ (⊥‘𝐶)) |
| 8 | 7 | ineq2i 4165 | . . . 4 ⊢ ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∨ℋ 𝐶))) = ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) |
| 9 | 1, 5, 8 | 3eqtr4i 2763 | . . 3 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∩ (⊥‘𝐶)) = ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∨ℋ 𝐶))) |
| 10 | 9 | fveq2i 6820 | . 2 ⊢ (⊥‘((⊥‘(𝐴 ∨ℋ 𝐵)) ∩ (⊥‘𝐶))) = (⊥‘((⊥‘𝐴) ∩ (⊥‘(𝐵 ∨ℋ 𝐶)))) |
| 11 | 2, 3 | chjcli 31427 | . . 3 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
| 12 | 11, 6 | chdmm4i 31450 | . 2 ⊢ (⊥‘((⊥‘(𝐴 ∨ℋ 𝐵)) ∩ (⊥‘𝐶))) = ((𝐴 ∨ℋ 𝐵) ∨ℋ 𝐶) |
| 13 | 3, 6 | chjcli 31427 | . . 3 ⊢ (𝐵 ∨ℋ 𝐶) ∈ Cℋ |
| 14 | 2, 13 | chdmm4i 31450 | . 2 ⊢ (⊥‘((⊥‘𝐴) ∩ (⊥‘(𝐵 ∨ℋ 𝐶)))) = (𝐴 ∨ℋ (𝐵 ∨ℋ 𝐶)) |
| 15 | 10, 12, 14 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 ∨ℋ 𝐵) ∨ℋ 𝐶) = (𝐴 ∨ℋ (𝐵 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ‘cfv 6477 (class class class)co 7341 Cℋ cch 30899 ⊥cort 30900 ∨ℋ chj 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cc 10318 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 ax-hilex 30969 ax-hfvadd 30970 ax-hvcom 30971 ax-hvass 30972 ax-hv0cl 30973 ax-hvaddid 30974 ax-hfvmul 30975 ax-hvmulid 30976 ax-hvmulass 30977 ax-hvdistr1 30978 ax-hvdistr2 30979 ax-hvmul0 30980 ax-hfi 31049 ax-his1 31052 ax-his2 31053 ax-his3 31054 ax-his4 31055 ax-hcompl 31172 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-sum 15586 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-cn 23135 df-cnp 23136 df-lm 23137 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cfil 25175 df-cau 25176 df-cmet 25177 df-grpo 30463 df-gid 30464 df-ginv 30465 df-gdiv 30466 df-ablo 30515 df-vc 30529 df-nv 30562 df-va 30565 df-ba 30566 df-sm 30567 df-0v 30568 df-vs 30569 df-nmcv 30570 df-ims 30571 df-dip 30671 df-ssp 30692 df-ph 30783 df-cbn 30833 df-hnorm 30938 df-hba 30939 df-hvsub 30941 df-hlim 30942 df-hcau 30943 df-sh 31177 df-ch 31191 df-oc 31222 df-ch0 31223 df-shs 31278 df-chj 31280 |
| This theorem is referenced by: chj12i 31492 chj4i 31493 chjass 31503 qlax3i 31599 mayetes3i 31699 atabs2i 32372 |
| Copyright terms: Public domain | W3C validator |