![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restclsseplem | Structured version Visualization version GIF version |
Description: Lemma for restclssep 48117. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
restclsseplem.7 | ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
Ref | Expression |
---|---|
restclsseplem | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls2.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
3 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
4 | restcls2.4 | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
5 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
6 | 1, 2, 3, 4, 5 | restcls2 48115 | . . . 4 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
7 | 6 | ineq1d 4209 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇)) |
8 | inass 4218 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) | |
9 | 7, 8 | eqtrdi 2781 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇))) |
10 | restclsseplem.6 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
11 | restclsseplem.7 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) | |
12 | sseqin2 4213 | . . . 4 ⊢ (𝑇 ⊆ 𝑌 ↔ (𝑌 ∩ 𝑇) = 𝑇) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ (𝜑 → (𝑌 ∩ 𝑇) = 𝑇) |
14 | 13 | ineq2d 4210 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) = (((cls‘𝐽)‘𝑆) ∩ 𝑇)) |
15 | 9, 10, 14 | 3eqtr3rd 2774 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 ∪ cuni 4909 ‘cfv 6549 (class class class)co 7419 ↾t crest 17405 Topctop 22839 Clsdccld 22964 clsccl 22966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-en 8965 df-fin 8968 df-fi 9436 df-rest 17407 df-topgen 17428 df-top 22840 df-topon 22857 df-bases 22893 df-cld 22967 df-cls 22969 |
This theorem is referenced by: restclssep 48117 |
Copyright terms: Public domain | W3C validator |