| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restclsseplem | Structured version Visualization version GIF version | ||
| Description: Lemma for restclssep 49077. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| restclsseplem.7 | ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
| Ref | Expression |
|---|---|
| restclsseplem | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 3 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 4 | restcls2.4 | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 5 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | restcls2 49075 | . . . 4 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 7 | 6 | ineq1d 4168 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇)) |
| 8 | inass 4177 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) | |
| 9 | 7, 8 | eqtrdi 2784 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇))) |
| 10 | restclsseplem.6 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
| 11 | restclsseplem.7 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) | |
| 12 | sseqin2 4172 | . . . 4 ⊢ (𝑇 ⊆ 𝑌 ↔ (𝑌 ∩ 𝑇) = 𝑇) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑌 ∩ 𝑇) = 𝑇) |
| 14 | 13 | ineq2d 4169 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) = (((cls‘𝐽)‘𝑆) ∩ 𝑇)) |
| 15 | 9, 10, 14 | 3eqtr3rd 2777 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 ↾t crest 17331 Topctop 22828 Clsdccld 22951 clsccl 22953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-en 8880 df-fin 8883 df-fi 9306 df-rest 17333 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-cls 22956 |
| This theorem is referenced by: restclssep 49077 |
| Copyright terms: Public domain | W3C validator |