| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restclsseplem | Structured version Visualization version GIF version | ||
| Description: Lemma for restclssep 48838. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| restclsseplem.6 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| restclsseplem.7 | ⊢ (𝜑 → 𝑇 ⊆ 𝑌) |
| Ref | Expression |
|---|---|
| restclsseplem | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.1 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 3 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 4 | restcls2.4 | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 5 | restcls2.5 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | restcls2 48836 | . . . 4 ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
| 7 | 6 | ineq1d 4194 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇)) |
| 8 | inass 4203 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) | |
| 9 | 7, 8 | eqtrdi 2786 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇))) |
| 10 | restclsseplem.6 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
| 11 | restclsseplem.7 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑌) | |
| 12 | sseqin2 4198 | . . . 4 ⊢ (𝑇 ⊆ 𝑌 ↔ (𝑌 ∩ 𝑇) = 𝑇) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑌 ∩ 𝑇) = 𝑇) |
| 14 | 13 | ineq2d 4195 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ (𝑌 ∩ 𝑇)) = (((cls‘𝐽)‘𝑆) ∩ 𝑇)) |
| 15 | 9, 10, 14 | 3eqtr3rd 2779 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ‘cfv 6530 (class class class)co 7403 ↾t crest 17432 Topctop 22829 Clsdccld 22952 clsccl 22954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-en 8958 df-fin 8961 df-fi 9421 df-rest 17434 df-topgen 17455 df-top 22830 df-topon 22847 df-bases 22882 df-cld 22955 df-cls 22957 |
| This theorem is referenced by: restclssep 48838 |
| Copyright terms: Public domain | W3C validator |