| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetlem11N | Structured version Visualization version GIF version | ||
| Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihmeetlem9.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihmeetlem9.l | ⊢ ≤ = (le‘𝐾) |
| dihmeetlem9.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihmeetlem9.j | ⊢ ∨ = (join‘𝐾) |
| dihmeetlem9.m | ⊢ ∧ = (meet‘𝐾) |
| dihmeetlem9.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihmeetlem9.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihmeetlem9.s | ⊢ ⊕ = (LSSum‘𝑈) |
| dihmeetlem9.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihmeetlem11N | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) ∩ (𝐼‘𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihmeetlem9.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihmeetlem9.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihmeetlem9.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dihmeetlem9.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | dihmeetlem9.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 6 | dihmeetlem9.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | dihmeetlem9.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | dihmeetlem9.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
| 9 | dihmeetlem9.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dihmeetlem10N 41304 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) = ((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∨ 𝑝)))) |
| 11 | 10 | ineq1d 4178 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) ∩ (𝐼‘𝑌)) = (((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∨ 𝑝))) ∩ (𝐼‘𝑌))) |
| 12 | inass 4187 | . . 3 ⊢ (((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∨ 𝑝))) ∩ (𝐼‘𝑌)) = ((𝐼‘𝑋) ∩ ((𝐼‘(𝑌 ∨ 𝑝)) ∩ (𝐼‘𝑌))) | |
| 13 | simpl1l 1225 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝐾 ∈ HL) | |
| 14 | 13 | hllatd 39351 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝐾 ∈ Lat) |
| 15 | simpl3 1194 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝑌 ∈ 𝐵) | |
| 16 | simprll 778 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝑝 ∈ 𝐴) | |
| 17 | 1, 6 | atbase 39276 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
| 18 | 16, 17 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝑝 ∈ 𝐵) |
| 19 | 1, 2, 4 | latlej1 18390 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑝)) |
| 20 | 14, 15, 18, 19 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → 𝑌 ≤ (𝑌 ∨ 𝑝)) |
| 21 | simpl1 1192 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 22 | 1, 4 | latjcl 18381 | . . . . . . . 8 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → (𝑌 ∨ 𝑝) ∈ 𝐵) |
| 23 | 14, 15, 18, 22 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (𝑌 ∨ 𝑝) ∈ 𝐵) |
| 24 | 1, 2, 3, 9 | dihord 41252 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 ∨ 𝑝) ∈ 𝐵) → ((𝐼‘𝑌) ⊆ (𝐼‘(𝑌 ∨ 𝑝)) ↔ 𝑌 ≤ (𝑌 ∨ 𝑝))) |
| 25 | 21, 15, 23, 24 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘𝑌) ⊆ (𝐼‘(𝑌 ∨ 𝑝)) ↔ 𝑌 ≤ (𝑌 ∨ 𝑝))) |
| 26 | 20, 25 | mpbird 257 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (𝐼‘𝑌) ⊆ (𝐼‘(𝑌 ∨ 𝑝))) |
| 27 | sseqin2 4182 | . . . . 5 ⊢ ((𝐼‘𝑌) ⊆ (𝐼‘(𝑌 ∨ 𝑝)) ↔ ((𝐼‘(𝑌 ∨ 𝑝)) ∩ (𝐼‘𝑌)) = (𝐼‘𝑌)) | |
| 28 | 26, 27 | sylib 218 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘(𝑌 ∨ 𝑝)) ∩ (𝐼‘𝑌)) = (𝐼‘𝑌)) |
| 29 | 28 | ineq2d 4179 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘𝑋) ∩ ((𝐼‘(𝑌 ∨ 𝑝)) ∩ (𝐼‘𝑌))) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
| 30 | 12, 29 | eqtrid 2776 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∨ 𝑝))) ∩ (𝐼‘𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
| 31 | 11, 30 | eqtrd 2764 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) ∩ (𝐼‘𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 lecple 17204 joincjn 18253 meetcmee 18254 Latclat 18373 LSSumclsm 19549 Atomscatm 39250 HLchlt 39337 LHypclh 39972 DVecHcdvh 41066 DIsoHcdih 41216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-riotaBAD 38940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17381 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19232 df-lsm 19551 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-llines 39486 df-lplanes 39487 df-lvols 39488 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 df-laut 39977 df-ldil 40092 df-ltrn 40093 df-trl 40147 df-tendo 40743 df-edring 40745 df-disoa 41017 df-dvech 41067 df-dib 41127 df-dic 41161 df-dih 41217 |
| This theorem is referenced by: dihmeetlem12N 41306 |
| Copyright terms: Public domain | W3C validator |