![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthres2b | Structured version Visualization version GIF version |
Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fthres2b.a | ⊢ 𝐴 = (Base‘𝐶) |
fthres2b.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fthres2b.r | ⊢ (𝜑 → 𝑅 ∈ (Subcat‘𝐷)) |
fthres2b.s | ⊢ (𝜑 → 𝑅 Fn (𝑆 × 𝑆)) |
fthres2b.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
fthres2b.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹‘𝑥)𝑅(𝐹‘𝑦))) |
Ref | Expression |
---|---|
fthres2b | ⊢ (𝜑 → (𝐹(𝐶 Faith 𝐷)𝐺 ↔ 𝐹(𝐶 Faith (𝐷 ↾cat 𝑅))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthres2b.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
2 | fthres2b.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | fthres2b.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (Subcat‘𝐷)) | |
4 | fthres2b.s | . . . 4 ⊢ (𝜑 → 𝑅 Fn (𝑆 × 𝑆)) | |
5 | fthres2b.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | fthres2b.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹‘𝑥)𝑅(𝐹‘𝑦))) | |
7 | 1, 2, 3, 4, 5, 6 | funcres2b 17886 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func (𝐷 ↾cat 𝑅))𝐺)) |
8 | 7 | anbi1d 629 | . 2 ⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 Fun ◡(𝑥𝐺𝑦)) ↔ (𝐹(𝐶 Func (𝐷 ↾cat 𝑅))𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 Fun ◡(𝑥𝐺𝑦)))) |
9 | 1 | isfth 17906 | . 2 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 Fun ◡(𝑥𝐺𝑦))) |
10 | 1 | isfth 17906 | . 2 ⊢ (𝐹(𝐶 Faith (𝐷 ↾cat 𝑅))𝐺 ↔ (𝐹(𝐶 Func (𝐷 ↾cat 𝑅))𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 Fun ◡(𝑥𝐺𝑦))) |
11 | 8, 9, 10 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹(𝐶 Faith 𝐷)𝐺 ↔ 𝐹(𝐶 Faith (𝐷 ↾cat 𝑅))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5149 × cxp 5676 ◡ccnv 5677 Fun wfun 6543 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 Hom chom 17247 ↾cat cresc 17794 Subcatcsubc 17795 Func cfunc 17843 Faith cfth 17895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-hom 17260 df-cco 17261 df-cat 17651 df-cid 17652 df-homf 17653 df-ssc 17796 df-resc 17797 df-subc 17798 df-func 17847 df-fth 17897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |