|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version | ||
| Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 | 
| ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 | 
| Ref | Expression | 
|---|---|
| ordthmeo | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordthmeo.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordthmeo.2 | . . 3 ⊢ 𝑌 = dom 𝑆 | |
| 3 | 1, 2 | ordthmeolem 23809 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) | 
| 4 | isocnv 7350 | . . 3 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) | |
| 5 | 2, 1 | ordthmeolem 23809 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) | 
| 6 | 5 | 3com12 1124 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) | 
| 7 | 4, 6 | syl3an3 1166 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) | 
| 8 | ishmeo 23767 | . 2 ⊢ (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))) | |
| 9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ◡ccnv 5684 dom cdm 5685 ‘cfv 6561 Isom wiso 6562 (class class class)co 7431 ordTopcordt 17544 Cn ccn 23232 Homeochmeo 23761 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-2o 8507 df-map 8868 df-en 8986 df-dom 8987 df-fin 8989 df-fi 9451 df-topgen 17488 df-ordt 17546 df-top 22900 df-topon 22917 df-bases 22953 df-cn 23235 df-hmeo 23763 | 
| This theorem is referenced by: icopnfhmeo 24974 iccpnfhmeo 24976 xrhmeo 24977 xrge0iifhmeo 33935 | 
| Copyright terms: Public domain | W3C validator |