Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeo Structured version   Visualization version   GIF version

Theorem ordthmeo 22386
 Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1 𝑋 = dom 𝑅
ordthmeo.2 𝑌 = dom 𝑆
Assertion
Ref Expression
ordthmeo ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))

Proof of Theorem ordthmeo
StepHypRef Expression
1 ordthmeo.1 . . 3 𝑋 = dom 𝑅
2 ordthmeo.2 . . 3 𝑌 = dom 𝑆
31, 2ordthmeolem 22385 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))
4 isocnv 7060 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋))
52, 1ordthmeolem 22385 . . . 4 ((𝑆𝑊𝑅𝑉𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
653com12 1119 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
74, 6syl3an3 1161 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
8 ishmeo 22343 . 2 (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))))
93, 7, 8sylanbrc 585 1 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  ◡ccnv 5530  dom cdm 5531  ‘cfv 6331   Isom wiso 6332  (class class class)co 7133  ordTopcordt 16751   Cn ccn 21808  Homeochmeo 22337 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-fin 8491  df-fi 8853  df-topgen 16696  df-ordt 16753  df-top 21478  df-topon 21495  df-bases 21530  df-cn 21811  df-hmeo 22339 This theorem is referenced by:  icopnfhmeo  23527  iccpnfhmeo  23529  xrhmeo  23530  xrge0iifhmeo  31187
 Copyright terms: Public domain W3C validator