Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 |
ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 |
Ref | Expression |
---|---|
ordthmeo | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
2 | ordthmeo.2 | . . 3 ⊢ 𝑌 = dom 𝑆 | |
3 | 1, 2 | ordthmeolem 22940 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) |
4 | isocnv 7194 | . . 3 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) | |
5 | 2, 1 | ordthmeolem 22940 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
6 | 5 | 3com12 1122 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
7 | 4, 6 | syl3an3 1164 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
8 | ishmeo 22898 | . 2 ⊢ (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))) | |
9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ◡ccnv 5584 dom cdm 5585 ‘cfv 6427 Isom wiso 6428 (class class class)co 7268 ordTopcordt 17198 Cn ccn 22363 Homeochmeo 22892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-1o 8285 df-er 8486 df-map 8605 df-en 8722 df-dom 8723 df-fin 8725 df-fi 9158 df-topgen 17142 df-ordt 17200 df-top 22031 df-topon 22048 df-bases 22084 df-cn 22366 df-hmeo 22894 |
This theorem is referenced by: icopnfhmeo 24094 iccpnfhmeo 24096 xrhmeo 24097 xrge0iifhmeo 31872 |
Copyright terms: Public domain | W3C validator |