![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 |
ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 |
Ref | Expression |
---|---|
ordthmeo | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
2 | ordthmeo.2 | . . 3 ⊢ 𝑌 = dom 𝑆 | |
3 | 1, 2 | ordthmeolem 21975 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) |
4 | isocnv 6835 | . . 3 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) | |
5 | 2, 1 | ordthmeolem 21975 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
6 | 5 | 3com12 1159 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
7 | 4, 6 | syl3an3 1211 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
8 | ishmeo 21933 | . 2 ⊢ (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))) | |
9 | 3, 7, 8 | sylanbrc 580 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ◡ccnv 5341 dom cdm 5342 ‘cfv 6123 Isom wiso 6124 (class class class)co 6905 ordTopcordt 16512 Cn ccn 21399 Homeochmeo 21927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-fin 8226 df-fi 8586 df-topgen 16457 df-ordt 16514 df-top 21069 df-topon 21086 df-bases 21121 df-cn 21402 df-hmeo 21929 |
This theorem is referenced by: icopnfhmeo 23112 iccpnfhmeo 23114 xrhmeo 23115 xrge0iifhmeo 30527 |
Copyright terms: Public domain | W3C validator |