![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | β’ π = dom π |
ordthmeo.2 | β’ π = dom π |
Ref | Expression |
---|---|
ordthmeo | β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ )Homeo(ordTopβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 β’ π = dom π | |
2 | ordthmeo.2 | . . 3 β’ π = dom π | |
3 | 1, 2 | ordthmeolem 23649 | . 2 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ ) Cn (ordTopβπ))) |
4 | isocnv 7320 | . . 3 β’ (πΉ Isom π , π (π, π) β β‘πΉ Isom π, π (π, π)) | |
5 | 2, 1 | ordthmeolem 23649 | . . . 4 β’ ((π β π β§ π β π β§ β‘πΉ Isom π, π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
6 | 5 | 3com12 1120 | . . 3 β’ ((π β π β§ π β π β§ β‘πΉ Isom π, π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
7 | 4, 6 | syl3an3 1162 | . 2 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
8 | ishmeo 23607 | . 2 β’ (πΉ β ((ordTopβπ )Homeo(ordTopβπ)) β (πΉ β ((ordTopβπ ) Cn (ordTopβπ)) β§ β‘πΉ β ((ordTopβπ) Cn (ordTopβπ )))) | |
9 | 3, 7, 8 | sylanbrc 582 | 1 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ )Homeo(ordTopβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β‘ccnv 5666 dom cdm 5667 βcfv 6534 Isom wiso 6535 (class class class)co 7402 ordTopcordt 17450 Cn ccn 23072 Homeochmeo 23601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-fin 8940 df-fi 9403 df-topgen 17394 df-ordt 17452 df-top 22740 df-topon 22757 df-bases 22793 df-cn 23075 df-hmeo 23603 |
This theorem is referenced by: icopnfhmeo 24812 iccpnfhmeo 24814 xrhmeo 24815 xrge0iifhmeo 33435 |
Copyright terms: Public domain | W3C validator |