![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | β’ π = dom π |
ordthmeo.2 | β’ π = dom π |
Ref | Expression |
---|---|
ordthmeo | β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ )Homeo(ordTopβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 β’ π = dom π | |
2 | ordthmeo.2 | . . 3 β’ π = dom π | |
3 | 1, 2 | ordthmeolem 23304 | . 2 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ ) Cn (ordTopβπ))) |
4 | isocnv 7326 | . . 3 β’ (πΉ Isom π , π (π, π) β β‘πΉ Isom π, π (π, π)) | |
5 | 2, 1 | ordthmeolem 23304 | . . . 4 β’ ((π β π β§ π β π β§ β‘πΉ Isom π, π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
6 | 5 | 3com12 1123 | . . 3 β’ ((π β π β§ π β π β§ β‘πΉ Isom π, π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
7 | 4, 6 | syl3an3 1165 | . 2 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β β‘πΉ β ((ordTopβπ) Cn (ordTopβπ ))) |
8 | ishmeo 23262 | . 2 β’ (πΉ β ((ordTopβπ )Homeo(ordTopβπ)) β (πΉ β ((ordTopβπ ) Cn (ordTopβπ)) β§ β‘πΉ β ((ordTopβπ) Cn (ordTopβπ )))) | |
9 | 3, 7, 8 | sylanbrc 583 | 1 β’ ((π β π β§ π β π β§ πΉ Isom π , π (π, π)) β πΉ β ((ordTopβπ )Homeo(ordTopβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β‘ccnv 5675 dom cdm 5676 βcfv 6543 Isom wiso 6544 (class class class)co 7408 ordTopcordt 17444 Cn ccn 22727 Homeochmeo 23256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-fin 8942 df-fi 9405 df-topgen 17388 df-ordt 17446 df-top 22395 df-topon 22412 df-bases 22448 df-cn 22730 df-hmeo 23258 |
This theorem is referenced by: icopnfhmeo 24458 iccpnfhmeo 24460 xrhmeo 24461 xrge0iifhmeo 32911 |
Copyright terms: Public domain | W3C validator |