![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 |
ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 |
Ref | Expression |
---|---|
ordthmeo | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
2 | ordthmeo.2 | . . 3 ⊢ 𝑌 = dom 𝑆 | |
3 | 1, 2 | ordthmeolem 23825 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) |
4 | isocnv 7350 | . . 3 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) | |
5 | 2, 1 | ordthmeolem 23825 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
6 | 5 | 3com12 1122 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
7 | 4, 6 | syl3an3 1164 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
8 | ishmeo 23783 | . 2 ⊢ (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))) | |
9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ◡ccnv 5688 dom cdm 5689 ‘cfv 6563 Isom wiso 6564 (class class class)co 7431 ordTopcordt 17546 Cn ccn 23248 Homeochmeo 23777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-2o 8506 df-map 8867 df-en 8985 df-dom 8986 df-fin 8988 df-fi 9449 df-topgen 17490 df-ordt 17548 df-top 22916 df-topon 22933 df-bases 22969 df-cn 23251 df-hmeo 23779 |
This theorem is referenced by: icopnfhmeo 24988 iccpnfhmeo 24990 xrhmeo 24991 xrge0iifhmeo 33897 |
Copyright terms: Public domain | W3C validator |