MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeo Structured version   Visualization version   GIF version

Theorem ordthmeo 21976
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1 𝑋 = dom 𝑅
ordthmeo.2 𝑌 = dom 𝑆
Assertion
Ref Expression
ordthmeo ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))

Proof of Theorem ordthmeo
StepHypRef Expression
1 ordthmeo.1 . . 3 𝑋 = dom 𝑅
2 ordthmeo.2 . . 3 𝑌 = dom 𝑆
31, 2ordthmeolem 21975 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))
4 isocnv 6835 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋))
52, 1ordthmeolem 21975 . . . 4 ((𝑆𝑊𝑅𝑉𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
653com12 1159 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
74, 6syl3an3 1211 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
8 ishmeo 21933 . 2 (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))))
93, 7, 8sylanbrc 580 1 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113   = wceq 1658  wcel 2166  ccnv 5341  dom cdm 5342  cfv 6123   Isom wiso 6124  (class class class)co 6905  ordTopcordt 16512   Cn ccn 21399  Homeochmeo 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-fin 8226  df-fi 8586  df-topgen 16457  df-ordt 16514  df-top 21069  df-topon 21086  df-bases 21121  df-cn 21402  df-hmeo 21929
This theorem is referenced by:  icopnfhmeo  23112  iccpnfhmeo  23114  xrhmeo  23115  xrge0iifhmeo  30527
  Copyright terms: Public domain W3C validator