Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordthmeo | Structured version Visualization version GIF version |
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 |
ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 |
Ref | Expression |
---|---|
ordthmeo | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordthmeo.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
2 | ordthmeo.2 | . . 3 ⊢ 𝑌 = dom 𝑆 | |
3 | 1, 2 | ordthmeolem 22860 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) |
4 | isocnv 7181 | . . 3 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) | |
5 | 2, 1 | ordthmeolem 22860 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
6 | 5 | 3com12 1121 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
7 | 4, 6 | syl3an3 1163 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))) |
8 | ishmeo 22818 | . 2 ⊢ (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ ◡𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))) | |
9 | 3, 7, 8 | sylanbrc 582 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 dom cdm 5580 ‘cfv 6418 Isom wiso 6419 (class class class)co 7255 ordTopcordt 17127 Cn ccn 22283 Homeochmeo 22812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-topgen 17071 df-ordt 17129 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-hmeo 22814 |
This theorem is referenced by: icopnfhmeo 24012 iccpnfhmeo 24014 xrhmeo 24015 xrge0iifhmeo 31788 |
Copyright terms: Public domain | W3C validator |