Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > midcom | Structured version Visualization version GIF version |
Description: Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
midcom | ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2758 | . . 3 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
5 | eqid 2758 | . . 3 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
6 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
8 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 1, 2, 3, 6, 7, 8, 9 | midcl 26683 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ 𝑃) |
11 | eqid 2758 | . . 3 ⊢ ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴)) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴)) | |
12 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) = (𝐵(midG‘𝐺)𝐴)) | |
13 | 1, 2, 3, 6, 7, 8, 9, 12 | midcgr 26686 | . . 3 ⊢ (𝜑 → ((𝐵(midG‘𝐺)𝐴) − 𝐵) = ((𝐵(midG‘𝐺)𝐴) − 𝐴)) |
14 | 1, 2, 3, 6, 7, 8, 9 | midbtwn 26685 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ (𝐵𝐼𝐴)) |
15 | 1, 2, 3, 4, 5, 6, 10, 11, 9, 8, 13, 14 | ismir 26565 | . 2 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴))‘𝐴)) |
16 | 1, 2, 3, 6, 7, 9, 8, 5, 10 | ismidb 26684 | . 2 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴))) |
17 | 15, 16 | mpbid 235 | 1 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 2c2 11742 Basecbs 16554 distcds 16645 TarskiGcstrkg 26336 DimTarskiG≥cstrkgld 26340 Itvcitv 26342 LineGclng 26343 pInvGcmir 26558 midGcmid 26678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-xnn0 12020 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 df-s1 14010 df-s2 14270 df-s3 14271 df-trkgc 26354 df-trkgb 26355 df-trkgcb 26356 df-trkgld 26358 df-trkg 26359 df-cgrg 26417 df-leg 26489 df-mir 26559 df-rag 26600 df-perpg 26602 df-mid 26680 |
This theorem is referenced by: lmicom 26694 hypcgrlem1 26705 hypcgrlem2 26706 hypcgr 26707 |
Copyright terms: Public domain | W3C validator |