| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > midcom | Structured version Visualization version GIF version | ||
| Description: Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| midcom | ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | eqid 2735 | . . 3 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 5 | eqid 2735 | . . 3 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 6 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 8 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | 1, 2, 3, 6, 7, 8, 9 | midcl 28702 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ 𝑃) |
| 11 | eqid 2735 | . . 3 ⊢ ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴)) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴)) | |
| 12 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) = (𝐵(midG‘𝐺)𝐴)) | |
| 13 | 1, 2, 3, 6, 7, 8, 9, 12 | midcgr 28705 | . . 3 ⊢ (𝜑 → ((𝐵(midG‘𝐺)𝐴) − 𝐵) = ((𝐵(midG‘𝐺)𝐴) − 𝐴)) |
| 14 | 1, 2, 3, 6, 7, 8, 9 | midbtwn 28704 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ (𝐵𝐼𝐴)) |
| 15 | 1, 2, 3, 4, 5, 6, 10, 11, 9, 8, 13, 14 | ismir 28584 | . 2 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴))‘𝐴)) |
| 16 | 1, 2, 3, 6, 7, 9, 8, 5, 10 | ismidb 28703 | . 2 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)𝐴))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴))) |
| 17 | 15, 16 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 2c2 12293 Basecbs 17226 distcds 17278 TarskiGcstrkg 28352 DimTarskiG≥cstrkgld 28356 Itvcitv 28358 LineGclng 28359 pInvGcmir 28577 midGcmid 28697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-concat 14587 df-s1 14612 df-s2 14865 df-s3 14866 df-trkgc 28373 df-trkgb 28374 df-trkgcb 28375 df-trkgld 28377 df-trkg 28378 df-cgrg 28436 df-leg 28508 df-mir 28578 df-rag 28619 df-perpg 28621 df-mid 28699 |
| This theorem is referenced by: lmicom 28713 hypcgrlem1 28724 hypcgrlem2 28725 hypcgr 28726 |
| Copyright terms: Public domain | W3C validator |