| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpcco2 | Structured version Visualization version GIF version | ||
| Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| phtpcco2.f | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
| phtpcco2.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| phtpcco2 | ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpcco2.f | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | |
| 2 | isphtpc 24893 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 4 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | phtpcco2.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 6 | cnco 23153 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
| 8 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 9 | cnco 23153 | . . 3 ⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) | |
| 10 | 8, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
| 11 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) |
| 12 | n0 4316 | . . . 4 ⊢ ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| 14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽)) |
| 15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽)) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 18 | 14, 15, 16, 17 | phtpyco2 24889 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃 ∘ 𝑓) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |
| 19 | 18 | ne0d 4305 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 20 | 13, 19 | exlimddv 1935 | . 2 ⊢ (𝜑 → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 21 | isphtpc 24893 | . 2 ⊢ ((𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺) ↔ ((𝑃 ∘ 𝐹) ∈ (II Cn 𝐾) ∧ (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅)) | |
| 22 | 7, 10, 20, 21 | syl3anbrc 1344 | 1 ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 Cn ccn 23111 IIcii 24768 PHtpycphtpy 24867 ≃phcphtpc 24868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-tx 23449 df-ii 24770 df-htpy 24869 df-phtpy 24870 df-phtpc 24891 |
| This theorem is referenced by: pi1cof 24959 cvmlift3lem1 35306 |
| Copyright terms: Public domain | W3C validator |