MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcco2 Structured version   Visualization version   GIF version

Theorem phtpcco2 23206
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
phtpcco2.f (𝜑𝐹( ≃ph𝐽)𝐺)
phtpcco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
phtpcco2 (𝜑 → (𝑃𝐹)( ≃ph𝐾)(𝑃𝐺))

Proof of Theorem phtpcco2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 phtpcco2.f . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐺)
2 isphtpc 23201 . . . . 5 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
31, 2sylib 210 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
43simp1d 1133 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 phtpcco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
6 cnco 21478 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
74, 5, 6syl2anc 579 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
83simp2d 1134 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 cnco 21478 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
108, 5, 9syl2anc 579 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
113simp3d 1135 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)
12 n0 4158 . . . 4 ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
1311, 12sylib 210 . . 3 (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
144adantr 474 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽))
158adantr 474 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽))
165adantr 474 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾))
17 simpr 479 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
1814, 15, 16, 17phtpyco2 23197 . . . 4 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃𝑓) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
1918ne0d 4149 . . 3 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅)
2013, 19exlimddv 1978 . 2 (𝜑 → ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅)
21 isphtpc 23201 . 2 ((𝑃𝐹)( ≃ph𝐾)(𝑃𝐺) ↔ ((𝑃𝐹) ∈ (II Cn 𝐾) ∧ (𝑃𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅))
227, 10, 20, 21syl3anbrc 1400 1 (𝜑 → (𝑃𝐹)( ≃ph𝐾)(𝑃𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071  wex 1823  wcel 2106  wne 2968  c0 4140   class class class wbr 4886  ccom 5359  cfv 6135  (class class class)co 6922   Cn ccn 21436  IIcii 23086  PHtpycphtpy 23175  phcphtpc 23176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-icc 12494  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-cn 21439  df-tx 21774  df-ii 23088  df-htpy 23177  df-phtpy 23178  df-phtpc 23199
This theorem is referenced by:  pi1cof  23266  cvmlift3lem1  31900
  Copyright terms: Public domain W3C validator