Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phtpcco2 | Structured version Visualization version GIF version |
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
phtpcco2.f | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
phtpcco2.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
phtpcco2 | ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpcco2.f | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | |
2 | isphtpc 24063 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
4 | 3 | simp1d 1140 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
5 | phtpcco2.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
6 | cnco 22325 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) | |
7 | 4, 5, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
8 | 3 | simp2d 1141 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
9 | cnco 22325 | . . 3 ⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) | |
10 | 8, 5, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
11 | 3 | simp3d 1142 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) |
12 | n0 4277 | . . . 4 ⊢ ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽)) |
15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽)) |
16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾)) |
17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
18 | 14, 15, 16, 17 | phtpyco2 24059 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃 ∘ 𝑓) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |
19 | 18 | ne0d 4266 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
20 | 13, 19 | exlimddv 1939 | . 2 ⊢ (𝜑 → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
21 | isphtpc 24063 | . 2 ⊢ ((𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺) ↔ ((𝑃 ∘ 𝐹) ∈ (II Cn 𝐾) ∧ (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅)) | |
22 | 7, 10, 20, 21 | syl3anbrc 1341 | 1 ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 Cn ccn 22283 IIcii 23944 PHtpycphtpy 24037 ≃phcphtpc 24038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-tx 22621 df-ii 23946 df-htpy 24039 df-phtpy 24040 df-phtpc 24061 |
This theorem is referenced by: pi1cof 24128 cvmlift3lem1 33181 |
Copyright terms: Public domain | W3C validator |