| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpcco2 | Structured version Visualization version GIF version | ||
| Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| phtpcco2.f | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
| phtpcco2.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| phtpcco2 | ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpcco2.f | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | |
| 2 | isphtpc 24962 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 4 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | phtpcco2.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 6 | cnco 23220 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
| 8 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 9 | cnco 23220 | . . 3 ⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) | |
| 10 | 8, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
| 11 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) |
| 12 | n0 4333 | . . . 4 ⊢ ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| 14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽)) |
| 15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽)) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 18 | 14, 15, 16, 17 | phtpyco2 24958 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃 ∘ 𝑓) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |
| 19 | 18 | ne0d 4322 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 20 | 13, 19 | exlimddv 1934 | . 2 ⊢ (𝜑 → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 21 | isphtpc 24962 | . 2 ⊢ ((𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺) ↔ ((𝑃 ∘ 𝐹) ∈ (II Cn 𝐾) ∧ (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅)) | |
| 22 | 7, 10, 20, 21 | syl3anbrc 1343 | 1 ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 Cn ccn 23178 IIcii 24837 PHtpycphtpy 24936 ≃phcphtpc 24937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-icc 13376 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-topgen 17459 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-bases 22900 df-cn 23181 df-tx 23516 df-ii 24839 df-htpy 24938 df-phtpy 24939 df-phtpc 24960 |
| This theorem is referenced by: pi1cof 25028 cvmlift3lem1 35283 |
| Copyright terms: Public domain | W3C validator |