| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpcco2 | Structured version Visualization version GIF version | ||
| Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| phtpcco2.f | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) |
| phtpcco2.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| phtpcco2 | ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpcco2.f | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | |
| 2 | isphtpc 24909 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 4 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | phtpcco2.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
| 6 | cnco 23169 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
| 8 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 9 | cnco 23169 | . . 3 ⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) | |
| 10 | 8, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
| 11 | 3 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) |
| 12 | n0 4306 | . . . 4 ⊢ ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| 14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽)) |
| 15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽)) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 18 | 14, 15, 16, 17 | phtpyco2 24905 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃 ∘ 𝑓) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |
| 19 | 18 | ne0d 4295 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 20 | 13, 19 | exlimddv 1935 | . 2 ⊢ (𝜑 → ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅) |
| 21 | isphtpc 24909 | . 2 ⊢ ((𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺) ↔ ((𝑃 ∘ 𝐹) ∈ (II Cn 𝐾) ∧ (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺)) ≠ ∅)) | |
| 22 | 7, 10, 20, 21 | syl3anbrc 1344 | 1 ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 class class class wbr 5095 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 Cn ccn 23127 IIcii 24784 PHtpycphtpy 24883 ≃phcphtpc 24884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 df-tx 23465 df-ii 24786 df-htpy 24885 df-phtpy 24886 df-phtpc 24907 |
| This theorem is referenced by: pi1cof 24975 cvmlift3lem1 35291 |
| Copyright terms: Public domain | W3C validator |