MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcco2 Structured version   Visualization version   GIF version

Theorem phtpcco2 24847
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
phtpcco2.f (𝜑𝐹( ≃ph𝐽)𝐺)
phtpcco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
phtpcco2 (𝜑 → (𝑃𝐹)( ≃ph𝐾)(𝑃𝐺))

Proof of Theorem phtpcco2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 phtpcco2.f . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐺)
2 isphtpc 24841 . . . . 5 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
31, 2sylib 217 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
43simp1d 1139 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 phtpcco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
6 cnco 23091 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
83simp2d 1140 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 cnco 23091 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
108, 5, 9syl2anc 583 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
113simp3d 1141 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)
12 n0 4338 . . . 4 ((𝐹(PHtpy‘𝐽)𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
1311, 12sylib 217 . . 3 (𝜑 → ∃𝑓 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
144adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐹 ∈ (II Cn 𝐽))
158adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝐺 ∈ (II Cn 𝐽))
165adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑃 ∈ (𝐽 Cn 𝐾))
17 simpr 484 . . . . 5 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → 𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺))
1814, 15, 16, 17phtpyco2 24837 . . . 4 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → (𝑃𝑓) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
1918ne0d 4327 . . 3 ((𝜑𝑓 ∈ (𝐹(PHtpy‘𝐽)𝐺)) → ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅)
2013, 19exlimddv 1930 . 2 (𝜑 → ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅)
21 isphtpc 24841 . 2 ((𝑃𝐹)( ≃ph𝐾)(𝑃𝐺) ↔ ((𝑃𝐹) ∈ (II Cn 𝐾) ∧ (𝑃𝐺) ∈ (II Cn 𝐾) ∧ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)) ≠ ∅))
227, 10, 20, 21syl3anbrc 1340 1 (𝜑 → (𝑃𝐹)( ≃ph𝐾)(𝑃𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wex 1773  wcel 2098  wne 2932  c0 4314   class class class wbr 5138  ccom 5670  cfv 6533  (class class class)co 7401   Cn ccn 23049  IIcii 24716  PHtpycphtpy 24815  phcphtpc 24816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-topgen 17387  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-top 22717  df-topon 22734  df-bases 22770  df-cn 23052  df-tx 23387  df-ii 24718  df-htpy 24817  df-phtpy 24818  df-phtpc 24839
This theorem is referenced by:  pi1cof  24907  cvmlift3lem1  34765
  Copyright terms: Public domain W3C validator