| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcsectALTV | Structured version Visualization version GIF version | ||
| Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcsectALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngcsectALTV.e | ⊢ 𝐸 = (Base‘𝑋) |
| rngcsectALTV.n | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| rngcsectALTV | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsectALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | rngcsectALTV.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | rngcsectALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 7 | rngcsectALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 8 | 7 | rngccatALTV 48261 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | rngcsectALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | rngcsectALTV.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 1, 2, 3, 4, 5, 9, 10, 11 | issect 17660 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 13 | 7, 1, 6, 2, 10, 11 | rngchomALTV 48256 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHom 𝑌)) |
| 14 | 13 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌))) |
| 15 | 7, 1, 6, 2, 11, 10 | rngchomALTV 48256 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHom 𝑋)) |
| 16 | 15 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋))) |
| 17 | 14, 16 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)))) |
| 18 | 17 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 19 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑈 ∈ 𝑉) |
| 20 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋 ∈ 𝐵) |
| 21 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌 ∈ 𝐵) |
| 22 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
| 23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐺 ∈ (𝑌 RngHom 𝑋)) | |
| 24 | 7, 1, 19, 3, 20, 21, 20, 22, 23 | rngccoALTV 48259 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
| 25 | rngcsectALTV.e | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑋) | |
| 26 | 7, 1, 4, 6, 10, 25 | rngcidALTV 48262 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
| 28 | 24, 27 | eqeq12d 2745 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) |
| 29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 30 | 18, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 32 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) | |
| 33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 34 | 12, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 I cid 5513 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Sectcsect 17651 RngHom crnghm 20319 RngCatALTVcrngcALTV 48251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-sect 17654 df-mgm 18514 df-mgmhm 18566 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-ghm 19092 df-abl 19662 df-mgp 20026 df-rng 20038 df-rnghm 20321 df-rngcALTV 48252 |
| This theorem is referenced by: rngcinvALTV 48264 |
| Copyright terms: Public domain | W3C validator |