Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcsectALTV | Structured version Visualization version GIF version |
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcsectALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rngcsectALTV.e | ⊢ 𝐸 = (Base‘𝑋) |
rngcsectALTV.n | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
rngcsectALTV | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcsectALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | rngcsectALTV.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | rngcsectALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
7 | rngcsectALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
8 | 7 | rngccatALTV 45436 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | rngcsectALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | rngcsectALTV.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 9, 10, 11 | issect 17382 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
13 | 7, 1, 6, 2, 10, 11 | rngchomALTV 45431 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHomo 𝑌)) |
14 | 13 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHomo 𝑌))) |
15 | 7, 1, 6, 2, 11, 10 | rngchomALTV 45431 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHomo 𝑋)) |
16 | 15 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋))) |
17 | 14, 16 | anbi12d 630 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))) |
18 | 17 | anbi1d 629 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
19 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑈 ∈ 𝑉) |
20 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑋 ∈ 𝐵) |
21 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑌 ∈ 𝐵) |
22 | simprl 767 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) | |
23 | simprr 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐺 ∈ (𝑌 RngHomo 𝑋)) | |
24 | 7, 1, 19, 3, 20, 21, 20, 22, 23 | rngccoALTV 45434 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
25 | rngcsectALTV.e | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑋) | |
26 | 7, 1, 4, 6, 10, 25 | rngcidALTV 45437 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
28 | 24, 27 | eqeq12d 2754 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) |
29 | 28 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
30 | 18, 29 | bitrd 278 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
31 | df-3an 1087 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
32 | df-3an 1087 | . . 3 ⊢ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) | |
33 | 30, 31, 32 | 3bitr4g 313 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
34 | 12, 33 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 I cid 5479 ↾ cres 5582 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Sectcsect 17373 RngHomo crngh 45331 RngCatALTVcrngcALTV 45404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-sect 17376 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 df-abl 19304 df-mgp 19636 df-mgmhm 45221 df-rng0 45321 df-rnghomo 45333 df-rngcALTV 45406 |
This theorem is referenced by: rngcinvALTV 45439 |
Copyright terms: Public domain | W3C validator |