![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcsectALTV | Structured version Visualization version GIF version |
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcsectALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rngcsectALTV.e | ⊢ 𝐸 = (Base‘𝑋) |
rngcsectALTV.n | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
rngcsectALTV | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcsectALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2740 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2740 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2740 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | rngcsectALTV.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | rngcsectALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
7 | rngcsectALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
8 | 7 | rngccatALTV 47996 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | rngcsectALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | rngcsectALTV.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 9, 10, 11 | issect 17814 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
13 | 7, 1, 6, 2, 10, 11 | rngchomALTV 47991 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHom 𝑌)) |
14 | 13 | eleq2d 2830 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌))) |
15 | 7, 1, 6, 2, 11, 10 | rngchomALTV 47991 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHom 𝑋)) |
16 | 15 | eleq2d 2830 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋))) |
17 | 14, 16 | anbi12d 631 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)))) |
18 | 17 | anbi1d 630 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
19 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑈 ∈ 𝑉) |
20 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋 ∈ 𝐵) |
21 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌 ∈ 𝐵) |
22 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐺 ∈ (𝑌 RngHom 𝑋)) | |
24 | 7, 1, 19, 3, 20, 21, 20, 22, 23 | rngccoALTV 47994 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
25 | rngcsectALTV.e | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑋) | |
26 | 7, 1, 4, 6, 10, 25 | rngcidALTV 47997 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
28 | 24, 27 | eqeq12d 2756 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) |
29 | 28 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
30 | 18, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
31 | df-3an 1089 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
32 | df-3an 1089 | . . 3 ⊢ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) | |
33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
34 | 12, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Sectcsect 17805 RngHom crnghm 20460 RngCatALTVcrngcALTV 47986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-hom 17335 df-cco 17336 df-0g 17501 df-cat 17726 df-cid 17727 df-sect 17808 df-mgm 18678 df-mgmhm 18730 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-ghm 19253 df-abl 19825 df-mgp 20162 df-rng 20180 df-rnghm 20462 df-rngcALTV 47987 |
This theorem is referenced by: rngcinvALTV 47999 |
Copyright terms: Public domain | W3C validator |