| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcsectALTV | Structured version Visualization version GIF version | ||
| Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcsectALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngcsectALTV.e | ⊢ 𝐸 = (Base‘𝑋) |
| rngcsectALTV.n | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| rngcsectALTV | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsectALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2735 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2735 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | rngcsectALTV.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | rngcsectALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 7 | rngcsectALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 8 | 7 | rngccatALTV 48248 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | rngcsectALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | rngcsectALTV.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 1, 2, 3, 4, 5, 9, 10, 11 | issect 17766 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 13 | 7, 1, 6, 2, 10, 11 | rngchomALTV 48243 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHom 𝑌)) |
| 14 | 13 | eleq2d 2820 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌))) |
| 15 | 7, 1, 6, 2, 11, 10 | rngchomALTV 48243 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHom 𝑋)) |
| 16 | 15 | eleq2d 2820 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHom 𝑋))) |
| 17 | 14, 16 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)))) |
| 18 | 17 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 19 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑈 ∈ 𝑉) |
| 20 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑋 ∈ 𝐵) |
| 21 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝑌 ∈ 𝐵) |
| 22 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
| 23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → 𝐺 ∈ (𝑌 RngHom 𝑋)) | |
| 24 | 7, 1, 19, 3, 20, 21, 20, 22, 23 | rngccoALTV 48246 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
| 25 | rngcsectALTV.e | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑋) | |
| 26 | 7, 1, 4, 6, 10, 25 | rngcidALTV 48249 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
| 28 | 24, 27 | eqeq12d 2751 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) |
| 29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 30 | 18, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 32 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) | |
| 33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| 34 | 12, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 I cid 5547 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 Idccid 17677 Sectcsect 17757 RngHom crnghm 20394 RngCatALTVcrngcALTV 48238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-hom 17295 df-cco 17296 df-0g 17455 df-cat 17680 df-cid 17681 df-sect 17760 df-mgm 18618 df-mgmhm 18670 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-ghm 19196 df-abl 19764 df-mgp 20101 df-rng 20113 df-rnghm 20396 df-rngcALTV 48239 |
| This theorem is referenced by: rngcinvALTV 48251 |
| Copyright terms: Public domain | W3C validator |