![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcsect | Structured version Visualization version GIF version |
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setcsect.n | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
setcsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | setcsect.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | setcmon.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
7 | setcmon.c | . . . . 5 ⊢ 𝐶 = (SetCat‘𝑈) | |
8 | 7 | setccat 17931 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | setcmon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
11 | 7, 6 | setcbas 17924 | . . . 4 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
12 | 10, 11 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
13 | setcmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
14 | 13, 11 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
15 | 1, 2, 3, 4, 5, 9, 12, 14 | issect 17596 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
16 | 7, 6, 2, 10, 13 | elsetchom 17927 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
17 | 7, 6, 2, 13, 10 | elsetchom 17927 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌⟶𝑋)) |
18 | 16, 17 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋))) |
19 | 18 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
20 | 6 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑈 ∈ 𝑉) |
21 | 10 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑋 ∈ 𝑈) |
22 | 13 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑌 ∈ 𝑈) |
23 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐹:𝑋⟶𝑌) | |
24 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐺:𝑌⟶𝑋) | |
25 | 7, 20, 3, 21, 22, 21, 23, 24 | setcco 17929 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
26 | 7, 4, 6, 10 | setcid 17932 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
27 | 26 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
28 | 25, 27 | eqeq12d 2754 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
29 | 28 | pm5.32da 580 | . . . 4 ⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
30 | 19, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
31 | df-3an 1090 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
32 | df-3an 1090 | . . 3 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) | |
33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
34 | 15, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 〈cop 4591 class class class wbr 5104 I cid 5529 ↾ cres 5634 ∘ ccom 5636 ⟶wf 6490 ‘cfv 6494 (class class class)co 7352 Basecbs 17043 Hom chom 17104 compcco 17105 Catccat 17504 Idccid 17505 Sectcsect 17587 SetCatcsetc 17921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-1st 7914 df-2nd 7915 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-er 8607 df-map 8726 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-nn 12113 df-2 12175 df-3 12176 df-4 12177 df-5 12178 df-6 12179 df-7 12180 df-8 12181 df-9 12182 df-n0 12373 df-z 12459 df-dec 12578 df-uz 12723 df-fz 13380 df-struct 16979 df-slot 17014 df-ndx 17026 df-base 17044 df-hom 17117 df-cco 17118 df-cat 17508 df-cid 17509 df-sect 17590 df-setc 17922 |
This theorem is referenced by: setcinv 17936 |
Copyright terms: Public domain | W3C validator |