MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcsect Structured version   Visualization version   GIF version

Theorem setcsect 18134
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
setcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))

Proof of Theorem setcsect
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2737 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2737 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2737 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 setcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 setcmon.u . . . 4 (𝜑𝑈𝑉)
7 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
87setccat 18130 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 setcmon.x . . . 4 (𝜑𝑋𝑈)
117, 6setcbas 18123 . . . 4 (𝜑𝑈 = (Base‘𝐶))
1210, 11eleqtrd 2843 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
13 setcmon.y . . . 4 (𝜑𝑌𝑈)
1413, 11eleqtrd 2843 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
151, 2, 3, 4, 5, 9, 12, 14issect 17797 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
167, 6, 2, 10, 13elsetchom 18126 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
177, 6, 2, 13, 10elsetchom 18126 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌𝑋))
1816, 17anbi12d 632 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋)))
1918anbi1d 631 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
206adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑈𝑉)
2110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑋𝑈)
2213adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑌𝑈)
23 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝐹:𝑋𝑌)
24 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝐺:𝑌𝑋)
257, 20, 3, 21, 22, 21, 23, 24setcco 18128 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
267, 4, 6, 10setcid 18131 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋))
2726adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋))
2825, 27eqeq12d 2753 . . . . 5 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝑋)))
2928pm5.32da 579 . . . 4 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
3019, 29bitrd 279 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
31 df-3an 1089 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
32 df-3an 1089 . . 3 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
3330, 31, 323bitr4g 314 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
3415, 33bitrd 279 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143   I cid 5577  cres 5687  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708  Sectcsect 17788  SetCatcsetc 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-sect 17791  df-setc 18121
This theorem is referenced by:  setcinv  18135
  Copyright terms: Public domain W3C validator