| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcsect | Structured version Visualization version GIF version | ||
| Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| setcsect.n | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| setcsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | setcsect.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | setcmon.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 7 | setcmon.c | . . . . 5 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 8 | 7 | setccat 17984 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | setcmon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 11 | 7, 6 | setcbas 17977 | . . . 4 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 12 | 10, 11 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 13 | setcmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 14 | 13, 11 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 15 | 1, 2, 3, 4, 5, 9, 12, 14 | issect 17652 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 16 | 7, 6, 2, 10, 13 | elsetchom 17980 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
| 17 | 7, 6, 2, 13, 10 | elsetchom 17980 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌⟶𝑋)) |
| 18 | 16, 17 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋))) |
| 19 | 18 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑈 ∈ 𝑉) |
| 21 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑌 ∈ 𝑈) |
| 23 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐹:𝑋⟶𝑌) | |
| 24 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐺:𝑌⟶𝑋) | |
| 25 | 7, 20, 3, 21, 22, 21, 23, 24 | setcco 17982 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
| 26 | 7, 4, 6, 10 | setcid 17985 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 28 | 25, 27 | eqeq12d 2746 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
| 29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 30 | 19, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 32 | df-3an 1088 | . . 3 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) | |
| 33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 34 | 15, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 I cid 5508 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Hom chom 17164 compcco 17165 Catccat 17562 Idccid 17563 Sectcsect 17643 SetCatcsetc 17974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-hom 17177 df-cco 17178 df-cat 17566 df-cid 17567 df-sect 17646 df-setc 17975 |
| This theorem is referenced by: setcinv 17989 |
| Copyright terms: Public domain | W3C validator |