| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcsect | Structured version Visualization version GIF version | ||
| Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| setcsect.n | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| setcsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2733 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2733 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | setcsect.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | setcmon.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 7 | setcmon.c | . . . . 5 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 8 | 7 | setccat 18002 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | setcmon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 11 | 7, 6 | setcbas 17995 | . . . 4 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 12 | 10, 11 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 13 | setcmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 14 | 13, 11 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 15 | 1, 2, 3, 4, 5, 9, 12, 14 | issect 17670 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 16 | 7, 6, 2, 10, 13 | elsetchom 17998 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
| 17 | 7, 6, 2, 13, 10 | elsetchom 17998 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌⟶𝑋)) |
| 18 | 16, 17 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋))) |
| 19 | 18 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑈 ∈ 𝑉) |
| 21 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑌 ∈ 𝑈) |
| 23 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐹:𝑋⟶𝑌) | |
| 24 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐺:𝑌⟶𝑋) | |
| 25 | 7, 20, 3, 21, 22, 21, 23, 24 | setcco 18000 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
| 26 | 7, 4, 6, 10 | setcid 18003 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 28 | 25, 27 | eqeq12d 2749 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
| 29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 30 | 19, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 32 | df-3an 1088 | . . 3 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) | |
| 33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 34 | 15, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 I cid 5515 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 Hom chom 17182 compcco 17183 Catccat 17580 Idccid 17581 Sectcsect 17661 SetCatcsetc 17992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-slot 17103 df-ndx 17115 df-base 17131 df-hom 17195 df-cco 17196 df-cat 17584 df-cid 17585 df-sect 17664 df-setc 17993 |
| This theorem is referenced by: setcinv 18007 |
| Copyright terms: Public domain | W3C validator |