| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcsect | Structured version Visualization version GIF version | ||
| Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| setcsect.n | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| setcsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | setcsect.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | setcmon.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 7 | setcmon.c | . . . . 5 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 8 | 7 | setccat 18010 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 10 | setcmon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 11 | 7, 6 | setcbas 18003 | . . . 4 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 12 | 10, 11 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 13 | setcmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 14 | 13, 11 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 15 | 1, 2, 3, 4, 5, 9, 12, 14 | issect 17678 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 16 | 7, 6, 2, 10, 13 | elsetchom 18006 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
| 17 | 7, 6, 2, 13, 10 | elsetchom 18006 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌⟶𝑋)) |
| 18 | 16, 17 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋))) |
| 19 | 18 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑈 ∈ 𝑉) |
| 21 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑌 ∈ 𝑈) |
| 23 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐹:𝑋⟶𝑌) | |
| 24 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐺:𝑌⟶𝑋) | |
| 25 | 7, 20, 3, 21, 22, 21, 23, 24 | setcco 18008 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
| 26 | 7, 4, 6, 10 | setcid 18011 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
| 28 | 25, 27 | eqeq12d 2745 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
| 29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 30 | 19, 29 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 32 | df-3an 1088 | . . 3 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) | |
| 33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| 34 | 15, 33 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 I cid 5517 ↾ cres 5625 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Sectcsect 17669 SetCatcsetc 18000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-sect 17672 df-setc 18001 |
| This theorem is referenced by: setcinv 18015 |
| Copyright terms: Public domain | W3C validator |