![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcsect | Structured version Visualization version GIF version |
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setcsect.n | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
setcsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2726 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2726 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2726 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | setcsect.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | setcmon.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
7 | setcmon.c | . . . . 5 ⊢ 𝐶 = (SetCat‘𝑈) | |
8 | 7 | setccat 18107 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | setcmon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
11 | 7, 6 | setcbas 18100 | . . . 4 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
12 | 10, 11 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
13 | setcmon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
14 | 13, 11 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
15 | 1, 2, 3, 4, 5, 9, 12, 14 | issect 17769 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
16 | 7, 6, 2, 10, 13 | elsetchom 18103 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋⟶𝑌)) |
17 | 7, 6, 2, 13, 10 | elsetchom 18103 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌⟶𝑋)) |
18 | 16, 17 | anbi12d 630 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋))) |
19 | 18 | anbi1d 629 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
20 | 6 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑈 ∈ 𝑉) |
21 | 10 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑋 ∈ 𝑈) |
22 | 13 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝑌 ∈ 𝑈) |
23 | simprl 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐹:𝑋⟶𝑌) | |
24 | simprr 771 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → 𝐺:𝑌⟶𝑋) | |
25 | 7, 20, 3, 21, 22, 21, 23, 24 | setcco 18105 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
26 | 7, 4, 6, 10 | setcid 18108 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
27 | 26 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋)) |
28 | 25, 27 | eqeq12d 2742 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) |
29 | 28 | pm5.32da 577 | . . . 4 ⊢ (𝜑 → (((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
30 | 19, 29 | bitrd 278 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
31 | df-3an 1086 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
32 | df-3an 1086 | . . 3 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋))) | |
33 | 30, 31, 32 | 3bitr4g 313 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
34 | 15, 33 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋⟶𝑌 ∧ 𝐺:𝑌⟶𝑋 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 〈cop 4639 class class class wbr 5153 I cid 5579 ↾ cres 5684 ∘ ccom 5686 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Hom chom 17277 compcco 17278 Catccat 17677 Idccid 17678 Sectcsect 17760 SetCatcsetc 18097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-hom 17290 df-cco 17291 df-cat 17681 df-cid 17682 df-sect 17763 df-setc 18098 |
This theorem is referenced by: setcinv 18112 |
Copyright terms: Public domain | W3C validator |