MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcsect Structured version   Visualization version   GIF version

Theorem setcsect 17050
Description: A section in the category of sets, written out. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
setcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))

Proof of Theorem setcsect
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2798 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2798 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2798 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 setcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 setcmon.u . . . 4 (𝜑𝑈𝑉)
7 setcmon.c . . . . 5 𝐶 = (SetCat‘𝑈)
87setccat 17046 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 setcmon.x . . . 4 (𝜑𝑋𝑈)
117, 6setcbas 17039 . . . 4 (𝜑𝑈 = (Base‘𝐶))
1210, 11eleqtrd 2879 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
13 setcmon.y . . . 4 (𝜑𝑌𝑈)
1413, 11eleqtrd 2879 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
151, 2, 3, 4, 5, 9, 12, 14issect 16724 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
167, 6, 2, 10, 13elsetchom 17042 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
177, 6, 2, 13, 10elsetchom 17042 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺:𝑌𝑋))
1816, 17anbi12d 625 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋)))
1918anbi1d 624 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
206adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑈𝑉)
2110adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑋𝑈)
2213adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝑌𝑈)
23 simprl 788 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝐹:𝑋𝑌)
24 simprr 790 . . . . . . 7 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → 𝐺:𝑌𝑋)
257, 20, 3, 21, 22, 21, 23, 24setcco 17044 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
267, 4, 6, 10setcid 17047 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋))
2726adantr 473 . . . . . 6 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝑋))
2825, 27eqeq12d 2813 . . . . 5 ((𝜑 ∧ (𝐹:𝑋𝑌𝐺:𝑌𝑋)) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝑋)))
2928pm5.32da 575 . . . 4 (𝜑 → (((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
3019, 29bitrd 271 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
31 df-3an 1110 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
32 df-3an 1110 . . 3 ((𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋)) ↔ ((𝐹:𝑋𝑌𝐺:𝑌𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝑋)))
3330, 31, 323bitr4g 306 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
3415, 33bitrd 271 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹:𝑋𝑌𝐺:𝑌𝑋 ∧ (𝐺𝐹) = ( I ↾ 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  cop 4373   class class class wbr 4842   I cid 5218  cres 5313  ccom 5315  wf 6096  cfv 6100  (class class class)co 6877  Basecbs 16181  Hom chom 16275  compcco 16276  Catccat 16636  Idccid 16637  Sectcsect 16715  SetCatcsetc 17036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-map 8096  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-z 11664  df-dec 11781  df-uz 11928  df-fz 12578  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-hom 16288  df-cco 16289  df-cat 16640  df-cid 16641  df-sect 16718  df-setc 17037
This theorem is referenced by:  setcinv  17051
  Copyright terms: Public domain W3C validator