Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcsectALTV | Structured version Visualization version GIF version |
Description: A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcsectALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcsectALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcsectALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcsectALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcsectALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringcsectALTV.e | ⊢ 𝐸 = (Base‘𝑋) |
ringcsectALTV.n | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
ringcsectALTV | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcsectALTV.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | ringcsectALTV.n | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | ringcsectALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
7 | ringcsectALTV.c | . . . . 5 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
8 | 7 | ringccatALTV 45611 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | ringcsectALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | ringcsectALTV.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 9, 10, 11 | issect 17465 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
13 | 7, 1, 6, 2, 10, 11 | ringchomALTV 45606 | . . . . . . 7 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RingHom 𝑌)) |
14 | 13 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RingHom 𝑌))) |
15 | 7, 1, 6, 2, 11, 10 | ringchomALTV 45606 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RingHom 𝑋)) |
16 | 15 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RingHom 𝑋))) |
17 | 14, 16 | anbi12d 631 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)))) |
18 | 17 | anbi1d 630 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
19 | 6 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → 𝑈 ∈ 𝑉) |
20 | 10 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → 𝑋 ∈ 𝐵) |
21 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → 𝑌 ∈ 𝐵) |
22 | simprl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | |
23 | simprr 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → 𝐺 ∈ (𝑌 RingHom 𝑋)) | |
24 | 7, 1, 19, 3, 20, 21, 20, 22, 23 | ringccoALTV 45609 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘ 𝐹)) |
25 | ringcsectALTV.e | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑋) | |
26 | 7, 1, 4, 6, 10, 25 | ringcidALTV 45612 | . . . . . . 7 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
27 | 26 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸)) |
28 | 24, 27 | eqeq12d 2754 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) |
29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
30 | 18, 29 | bitrd 278 | . . 3 ⊢ (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
31 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
32 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸))) | |
33 | 30, 31, 32 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
34 | 12, 33 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 I cid 5488 ↾ cres 5591 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 Sectcsect 17456 RingHom crh 19956 RingCatALTVcringcALTV 45562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-hom 16986 df-cco 16987 df-0g 17152 df-cat 17377 df-cid 17378 df-sect 17459 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-ghm 18832 df-mgp 19721 df-ur 19738 df-ring 19785 df-rnghom 19959 df-ringcALTV 45564 |
This theorem is referenced by: ringcinvALTV 45614 |
Copyright terms: Public domain | W3C validator |