Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcsectALTV Structured version   Visualization version   GIF version

Theorem ringcsectALTV 46906
Description: A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcsectALTV.c 𝐢 = (RingCatALTVβ€˜π‘ˆ)
ringcsectALTV.b 𝐡 = (Baseβ€˜πΆ)
ringcsectALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
ringcsectALTV.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ringcsectALTV.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
ringcsectALTV.e 𝐸 = (Baseβ€˜π‘‹)
ringcsectALTV.n 𝑆 = (Sectβ€˜πΆ)
Assertion
Ref Expression
ringcsectALTV (πœ‘ β†’ (𝐹(π‘‹π‘†π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸))))

Proof of Theorem ringcsectALTV
StepHypRef Expression
1 ringcsectALTV.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 eqid 2732 . . 3 (Hom β€˜πΆ) = (Hom β€˜πΆ)
3 eqid 2732 . . 3 (compβ€˜πΆ) = (compβ€˜πΆ)
4 eqid 2732 . . 3 (Idβ€˜πΆ) = (Idβ€˜πΆ)
5 ringcsectALTV.n . . 3 𝑆 = (Sectβ€˜πΆ)
6 ringcsectALTV.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
7 ringcsectALTV.c . . . . 5 𝐢 = (RingCatALTVβ€˜π‘ˆ)
87ringccatALTV 46904 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
96, 8syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
10 ringcsectALTV.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
11 ringcsectALTV.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
121, 2, 3, 4, 5, 9, 10, 11issect 17696 . 2 (πœ‘ β†’ (𝐹(π‘‹π‘†π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹))))
137, 1, 6, 2, 10, 11ringchomALTV 46899 . . . . . . 7 (πœ‘ β†’ (𝑋(Hom β€˜πΆ)π‘Œ) = (𝑋 RingHom π‘Œ))
1413eleq2d 2819 . . . . . 6 (πœ‘ β†’ (𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ↔ 𝐹 ∈ (𝑋 RingHom π‘Œ)))
157, 1, 6, 2, 11, 10ringchomALTV 46899 . . . . . . 7 (πœ‘ β†’ (π‘Œ(Hom β€˜πΆ)𝑋) = (π‘Œ RingHom 𝑋))
1615eleq2d 2819 . . . . . 6 (πœ‘ β†’ (𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ↔ 𝐺 ∈ (π‘Œ RingHom 𝑋)))
1714, 16anbi12d 631 . . . . 5 (πœ‘ β†’ ((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋)) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))))
1817anbi1d 630 . . . 4 (πœ‘ β†’ (((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋)) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹))))
196adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ π‘ˆ ∈ 𝑉)
2010adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ 𝑋 ∈ 𝐡)
2111adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ π‘Œ ∈ 𝐡)
22 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
23 simprr 771 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ 𝐺 ∈ (π‘Œ RingHom 𝑋))
247, 1, 19, 3, 20, 21, 20, 22, 23ringccoALTV 46902 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = (𝐺 ∘ 𝐹))
25 ringcsectALTV.e . . . . . . . 8 𝐸 = (Baseβ€˜π‘‹)
267, 1, 4, 6, 10, 25ringcidALTV 46905 . . . . . . 7 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘‹) = ( I β†Ύ 𝐸))
2726adantr 481 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ ((Idβ€˜πΆ)β€˜π‘‹) = ( I β†Ύ 𝐸))
2824, 27eqeq12d 2748 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋))) β†’ ((𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹) ↔ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸)))
2928pm5.32da 579 . . . 4 (πœ‘ β†’ (((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸))))
3018, 29bitrd 278 . . 3 (πœ‘ β†’ (((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋)) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸))))
31 df-3an 1089 . . 3 ((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ ((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋)) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)))
32 df-3an 1089 . . 3 ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋)) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸)))
3330, 31, 323bitr4g 313 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋(Hom β€˜πΆ)π‘Œ) ∧ 𝐺 ∈ (π‘Œ(Hom β€˜πΆ)𝑋) ∧ (𝐺(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸))))
3412, 33bitrd 278 1 (πœ‘ β†’ (𝐹(π‘‹π‘†π‘Œ)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom π‘Œ) ∧ 𝐺 ∈ (π‘Œ RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I β†Ύ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4633   class class class wbr 5147   I cid 5572   β†Ύ cres 5677   ∘ ccom 5679  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Idccid 17605  Sectcsect 17687   RingHom crh 20240  RingCatALTVcringcALTV 46855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-hom 17217  df-cco 17218  df-0g 17383  df-cat 17608  df-cid 17609  df-sect 17690  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243  df-ringcALTV 46857
This theorem is referenced by:  ringcinvALTV  46907
  Copyright terms: Public domain W3C validator