Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdmss Structured version   Visualization version   GIF version

Theorem smfdmss 44608
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdmss.s (𝜑𝑆 ∈ SAlg)
smfdmss.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfdmss.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smfdmss (𝜑𝐷 𝑆)

Proof of Theorem smfdmss
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfdmss.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2 smfdmss.s . . . 4 (𝜑𝑆 ∈ SAlg)
3 smfdmss.d . . . 4 𝐷 = dom 𝐹
42, 3issmf 44603 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
51, 4mpbid 231 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
65simp1d 1141 1 (𝜑𝐷 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wral 3061  {crab 3403  wss 3898   cuni 4852   class class class wbr 5092  dom cdm 5620  wf 6475  cfv 6479  (class class class)co 7337  cr 10971   < clt 11110  t crest 17228  SAlgcsalg 44185  SMblFncsmblfn 44570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-pre-lttri 11046  ax-pre-lttrn 11047
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-er 8569  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-ioo 13184  df-ico 13186  df-smblfn 44571
This theorem is referenced by:  sssmf  44613  smfsssmf  44618  issmfle  44620  smfpimltxr  44622  issmfgt  44631  smfadd  44640  issmfge  44645  smflim  44652  smfpimgtxr  44655  smfpimioo  44662  smfresal  44663  smfrec  44664  smfres  44665  smfmul  44670  smfmulc1  44671  smfco  44677  smfsuplem3  44688  smfpimne  44714  smfpimne2  44715
  Copyright terms: Public domain W3C validator