![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdmss | Structured version Visualization version GIF version |
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfdmss.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdmss.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfdmss.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
smfdmss | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdmss.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
2 | smfdmss.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfdmss.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
4 | 2, 3 | issmf 46649 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
5 | 1, 4 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
6 | 5 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 < clt 11324 ↾t crest 17480 SAlgcsalg 46229 SMblFncsmblfn 46616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-ico 13413 df-smblfn 46617 |
This theorem is referenced by: sssmf 46659 smfsssmf 46664 issmfle 46666 smfpimltxr 46668 issmfgt 46677 smfadd 46686 issmfge 46691 smflim 46698 smfpimgtxr 46701 smfpimioo 46708 smfresal 46709 smfrec 46710 smfres 46711 smfmul 46716 smfmulc1 46717 smfco 46723 smfsuplem3 46734 smfpimne 46760 smfpimne2 46761 |
Copyright terms: Public domain | W3C validator |