Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdmss Structured version   Visualization version   GIF version

Theorem smfdmss 46689
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdmss.s (𝜑𝑆 ∈ SAlg)
smfdmss.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfdmss.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smfdmss (𝜑𝐷 𝑆)

Proof of Theorem smfdmss
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfdmss.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2 smfdmss.s . . . 4 (𝜑𝑆 ∈ SAlg)
3 smfdmss.d . . . 4 𝐷 = dom 𝐹
42, 3issmf 46684 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
51, 4mpbid 232 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
65simp1d 1141 1 (𝜑𝐷 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  wss 3963   cuni 4912   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cr 11152   < clt 11293  t crest 17467  SAlgcsalg 46264  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388  df-ico 13390  df-smblfn 46652
This theorem is referenced by:  sssmf  46694  smfsssmf  46699  issmfle  46701  smfpimltxr  46703  issmfgt  46712  smfadd  46721  issmfge  46726  smflim  46733  smfpimgtxr  46736  smfpimioo  46743  smfresal  46744  smfrec  46745  smfres  46746  smfmul  46751  smfmulc1  46752  smfco  46758  smfsuplem3  46769  smfpimne  46795  smfpimne2  46796
  Copyright terms: Public domain W3C validator