Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdmss | Structured version Visualization version GIF version |
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfdmss.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdmss.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfdmss.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
smfdmss | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdmss.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
2 | smfdmss.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfdmss.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
4 | 2, 3 | issmf 44264 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
5 | 1, 4 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
6 | 5 | simp1d 1141 | 1 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 < clt 11009 ↾t crest 17131 SAlgcsalg 43849 SMblFncsmblfn 44233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 df-ico 13085 df-smblfn 44234 |
This theorem is referenced by: sssmf 44274 smfsssmf 44279 issmfle 44281 smfpimltxr 44283 issmfgt 44292 smfadd 44300 issmfge 44305 smflim 44312 smfpimgtxr 44315 smfpimioo 44321 smfresal 44322 smfrec 44323 smfres 44324 smfmul 44329 smfmulc1 44330 smfco 44336 smfsuplem3 44346 |
Copyright terms: Public domain | W3C validator |