Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdmss Structured version   Visualization version   GIF version

Theorem smfdmss 41869
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdmss.s (𝜑𝑆 ∈ SAlg)
smfdmss.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfdmss.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smfdmss (𝜑𝐷 𝑆)

Proof of Theorem smfdmss
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfdmss.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2 smfdmss.s . . . 4 (𝜑𝑆 ∈ SAlg)
3 smfdmss.d . . . 4 𝐷 = dom 𝐹
42, 3issmf 41864 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
51, 4mpbid 224 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
65simp1d 1133 1 (𝜑𝐷 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  wral 3090  {crab 3094  wss 3792   cuni 4671   class class class wbr 4886  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  cr 10271   < clt 10411  t crest 16467  SAlgcsalg 41452  SMblFncsmblfn 41836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-ioo 12491  df-ico 12493  df-smblfn 41837
This theorem is referenced by:  sssmf  41874  smfsssmf  41879  issmfle  41881  issmfgt  41892  smfadd  41900  issmfge  41905  smflim  41912  smfpimgtxr  41915  smfpimioo  41921  smfresal  41922  smfrec  41923  smfres  41924  smfmul  41929  smfmulc1  41930  smfco  41936  smfsuplem3  41946
  Copyright terms: Public domain W3C validator