![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdmss | Structured version Visualization version GIF version |
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfdmss.s | β’ (π β π β SAlg) |
smfdmss.f | β’ (π β πΉ β (SMblFnβπ)) |
smfdmss.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
smfdmss | β’ (π β π· β βͺ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdmss.f | . . 3 β’ (π β πΉ β (SMblFnβπ)) | |
2 | smfdmss.s | . . . 4 β’ (π β π β SAlg) | |
3 | smfdmss.d | . . . 4 β’ π· = dom πΉ | |
4 | 2, 3 | issmf 45998 | . . 3 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
5 | 1, 4 | mpbid 231 | . 2 β’ (π β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
6 | 5 | simp1d 1139 | 1 β’ (π β π· β βͺ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 {crab 3426 β wss 3943 βͺ cuni 4902 class class class wbr 5141 dom cdm 5669 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcr 11108 < clt 11249 βΎt crest 17372 SAlgcsalg 45578 SMblFncsmblfn 45965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-ioo 13331 df-ico 13333 df-smblfn 45966 |
This theorem is referenced by: sssmf 46008 smfsssmf 46013 issmfle 46015 smfpimltxr 46017 issmfgt 46026 smfadd 46035 issmfge 46040 smflim 46047 smfpimgtxr 46050 smfpimioo 46057 smfresal 46058 smfrec 46059 smfres 46060 smfmul 46065 smfmulc1 46066 smfco 46072 smfsuplem3 46083 smfpimne 46109 smfpimne2 46110 |
Copyright terms: Public domain | W3C validator |