![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ituni0 | Structured version Visualization version GIF version |
Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
Ref | Expression |
---|---|
ituni0 | ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ituni.u | . . . 4 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
2 | 1 | itunifval 9526 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) = (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω)) |
3 | 2 | fveq1d 6413 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴)‘∅) = ((rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω)‘∅)) |
4 | fr0g 7770 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω)‘∅) = 𝐴) | |
5 | 3, 4 | eqtrd 2833 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∅c0 4115 ∪ cuni 4628 ↦ cmpt 4922 ↾ cres 5314 ‘cfv 6101 ωcom 7299 reccrdg 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 |
This theorem is referenced by: itunitc1 9530 itunitc 9531 ituniiun 9532 hsmexlem4 9539 |
Copyright terms: Public domain | W3C validator |