Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itunifn | Structured version Visualization version GIF version |
Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
Ref | Expression |
---|---|
itunifn | ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) Fn ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8297 | . 2 ⊢ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω) Fn ω | |
2 | ituni.u | . . . 4 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
3 | 2 | itunifval 10218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) = (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω)) |
4 | 3 | fneq1d 6557 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴) Fn ω ↔ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω) Fn ω)) |
5 | 1, 4 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) Fn ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∪ cuni 4844 ↦ cmpt 5164 ↾ cres 5602 Fn wfn 6453 ‘cfv 6458 ωcom 7744 reccrdg 8271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-inf2 9443 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 |
This theorem is referenced by: itunisuc 10221 itunitc1 10222 itunitc 10223 ituniiun 10224 hsmexlem5 10232 |
Copyright terms: Public domain | W3C validator |