Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ivthlem1 | Structured version Visualization version GIF version |
Description: Lemma for ivth 24618. The set 𝑆 of all 𝑥 values with (𝐹‘𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivth.10 | ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
Ref | Expression |
---|---|
ivthlem1 | ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 11025 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | ivth.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | rexrd 11025 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
5 | ivth.4 | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 1, 3, 5 | ltled 11123 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | lbicc2 13196 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
9 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
10 | 9 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
11 | ivth.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
12 | 11 | ralrimiva 3103 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
13 | 10, 12, 8 | rspcdva 3562 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
14 | ivth.3 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
15 | ivth.9 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
16 | 15 | simpld 495 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
17 | 13, 14, 16 | ltled 11123 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ 𝑈) |
18 | 9 | breq1d 5084 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ≤ 𝑈 ↔ (𝐹‘𝐴) ≤ 𝑈)) |
19 | ivth.10 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} | |
20 | 18, 19 | elrab2 3627 | . . 3 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) ≤ 𝑈)) |
21 | 8, 17, 20 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
22 | 19 | ssrab3 4015 | . . . . 5 ⊢ 𝑆 ⊆ (𝐴[,]𝐵) |
23 | 22 | sseli 3917 | . . . 4 ⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ (𝐴[,]𝐵)) |
24 | iccleub 13134 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ≤ 𝐵) | |
25 | 24 | 3expia 1120 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
26 | 2, 4, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
27 | 23, 26 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑆 → 𝑧 ≤ 𝐵)) |
28 | 27 | ralrimiv 3102 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵) |
29 | 21, 28 | jca 512 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,]cicc 13082 –cn→ccncf 24039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: ivthlem2 24616 ivthlem3 24617 |
Copyright terms: Public domain | W3C validator |