| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ivthlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ivth 25355. The set 𝑆 of all 𝑥 values with (𝐹‘𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivth.10 | ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
| Ref | Expression |
|---|---|
| ivthlem1 | ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11224 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | ivth.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 11224 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 5 | ivth.4 | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 6 | 1, 3, 5 | ltled 11322 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 7 | lbicc2 13425 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 9 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 10 | 9 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
| 11 | ivth.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 12 | 11 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 13 | 10, 12, 8 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 14 | ivth.3 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 15 | ivth.9 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
| 17 | 13, 14, 16 | ltled 11322 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ 𝑈) |
| 18 | 9 | breq1d 5117 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ≤ 𝑈 ↔ (𝐹‘𝐴) ≤ 𝑈)) |
| 19 | ivth.10 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} | |
| 20 | 18, 19 | elrab2 3662 | . . 3 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) ≤ 𝑈)) |
| 21 | 8, 17, 20 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 22 | 19 | ssrab3 4045 | . . . . 5 ⊢ 𝑆 ⊆ (𝐴[,]𝐵) |
| 23 | 22 | sseli 3942 | . . . 4 ⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ (𝐴[,]𝐵)) |
| 24 | iccleub 13362 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ≤ 𝐵) | |
| 25 | 24 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
| 26 | 2, 4, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
| 27 | 23, 26 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑆 → 𝑧 ≤ 𝐵)) |
| 28 | 27 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵) |
| 29 | 21, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 [,]cicc 13309 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: ivthlem2 25353 ivthlem3 25354 |
| Copyright terms: Public domain | W3C validator |