MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem1 Structured version   Visualization version   GIF version

Theorem ivthlem1 25486
Description: Lemma for ivth 25489. The set 𝑆 of all 𝑥 values with (𝐹𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
Assertion
Ref Expression
ivthlem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐷,𝑧   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝐴   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem ivthlem1
StepHypRef Expression
1 ivth.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 11311 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11311 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . . 5 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 11409 . . . 4 (𝜑𝐴𝐵)
7 lbicc2 13504 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1373 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 fveq2 6906 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
109eleq1d 2826 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
11 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1211ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
1310, 12, 8rspcdva 3623 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
14 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
15 ivth.9 . . . . 5 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1615simpld 494 . . . 4 (𝜑 → (𝐹𝐴) < 𝑈)
1713, 14, 16ltled 11409 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
189breq1d 5153 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝐴) ≤ 𝑈))
19 ivth.10 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
2018, 19elrab2 3695 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) ≤ 𝑈))
218, 17, 20sylanbrc 583 . 2 (𝜑𝐴𝑆)
2219ssrab3 4082 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
2322sseli 3979 . . . 4 (𝑧𝑆𝑧 ∈ (𝐴[,]𝐵))
24 iccleub 13442 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
25243expia 1122 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
262, 4, 25syl2anc 584 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
2723, 26syl5 34 . . 3 (𝜑 → (𝑧𝑆𝑧𝐵))
2827ralrimiv 3145 . 2 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
2921, 28jca 511 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  *cxr 11294   < clt 11295  cle 11296  [,]cicc 13390  cnccncf 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-icc 13394
This theorem is referenced by:  ivthlem2  25487  ivthlem3  25488
  Copyright terms: Public domain W3C validator