Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ivthlem1 | Structured version Visualization version GIF version |
Description: Lemma for ivth 24523. The set 𝑆 of all 𝑥 values with (𝐹‘𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivth.10 | ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
Ref | Expression |
---|---|
ivthlem1 | ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 10956 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | ivth.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | rexrd 10956 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
5 | ivth.4 | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 1, 3, 5 | ltled 11053 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | lbicc2 13125 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1369 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
9 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
10 | 9 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
11 | ivth.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
12 | 11 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
13 | 10, 12, 8 | rspcdva 3554 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
14 | ivth.3 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
15 | ivth.9 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
17 | 13, 14, 16 | ltled 11053 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ 𝑈) |
18 | 9 | breq1d 5080 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ≤ 𝑈 ↔ (𝐹‘𝐴) ≤ 𝑈)) |
19 | ivth.10 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} | |
20 | 18, 19 | elrab2 3620 | . . 3 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) ≤ 𝑈)) |
21 | 8, 17, 20 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
22 | 19 | ssrab3 4011 | . . . . 5 ⊢ 𝑆 ⊆ (𝐴[,]𝐵) |
23 | 22 | sseli 3913 | . . . 4 ⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ (𝐴[,]𝐵)) |
24 | iccleub 13063 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ≤ 𝐵) | |
25 | 24 | 3expia 1119 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
26 | 2, 4, 25 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧 ≤ 𝐵)) |
27 | 23, 26 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑆 → 𝑧 ≤ 𝐵)) |
28 | 27 | ralrimiv 3106 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵) |
29 | 21, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: ivthlem2 24521 ivthlem3 24522 |
Copyright terms: Public domain | W3C validator |