![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ivth | Structured version Visualization version GIF version |
Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
Ref | Expression |
---|---|
ivth | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ivth.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
4 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
6 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
7 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
8 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
9 | fveq2 6888 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
10 | 9 | breq1d 5157 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ≤ 𝑈 ↔ (𝐹‘𝑥) ≤ 𝑈)) |
11 | 10 | cbvrabv 3442 | . . 3 ⊢ {𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈} = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
12 | eqid 2732 | . . 3 ⊢ sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 | ivthlem3 24961 | . 2 ⊢ (𝜑 → (sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) |
14 | fveqeq2 6897 | . . 3 ⊢ (𝑐 = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) | |
15 | 14 | rspcev 3612 | . 2 ⊢ ((sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
16 | 13, 15 | syl 17 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {crab 3432 ⊆ wss 3947 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 supcsup 9431 ℂcc 11104 ℝcr 11105 < clt 11244 ≤ cle 11245 (,)cioo 13320 [,]cicc 13323 –cn→ccncf 24383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ioo 13324 df-icc 13327 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-cncf 24385 |
This theorem is referenced by: ivth2 24963 ivthle 24964 reeff1olem 25949 signsply0 33550 |
Copyright terms: Public domain | W3C validator |