| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ivth | Structured version Visualization version GIF version | ||
| Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| Ref | Expression |
|---|---|
| ivth | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ivth.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 4 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 5 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
| 6 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
| 7 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 8 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 9 | fveq2 6817 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 10 | 9 | breq1d 5096 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ≤ 𝑈 ↔ (𝐹‘𝑥) ≤ 𝑈)) |
| 11 | 10 | cbvrabv 3405 | . . 3 ⊢ {𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈} = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
| 12 | eqid 2731 | . . 3 ⊢ sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 | ivthlem3 25376 | . 2 ⊢ (𝜑 → (sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) |
| 14 | fveqeq2 6826 | . . 3 ⊢ (𝑐 = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) | |
| 15 | 14 | rspcev 3572 | . 2 ⊢ ((sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| 16 | 13, 15 | syl 17 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 supcsup 9319 ℂcc 10999 ℝcr 11000 < clt 11141 ≤ cle 11142 (,)cioo 13240 [,]cicc 13243 –cn→ccncf 24791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ioo 13244 df-icc 13247 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-cncf 24793 |
| This theorem is referenced by: ivth2 25378 ivthle 25379 reeff1olem 26378 signsply0 34556 |
| Copyright terms: Public domain | W3C validator |