MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivth Structured version   Visualization version   GIF version

Theorem ivth 23658
Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
Assertion
Ref Expression
ivth (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝑥,𝑐,𝐵   𝐷,𝑐,𝑥   𝐹,𝑐,𝑥   𝜑,𝑐,𝑥   𝐴,𝑐,𝑥   𝑈,𝑐,𝑥

Proof of Theorem ivth
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . 3 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
5 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . 3 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 fveq2 6446 . . . . 5 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
109breq1d 4896 . . . 4 (𝑦 = 𝑥 → ((𝐹𝑦) ≤ 𝑈 ↔ (𝐹𝑥) ≤ 𝑈))
1110cbvrabv 3395 . . 3 {𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈} = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
12 eqid 2777 . . 3 sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < ) = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < )
131, 2, 3, 4, 5, 6, 7, 8, 11, 12ivthlem3 23657 . 2 (𝜑 → (sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈))
14 fveqeq2 6455 . . 3 (𝑐 = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < ) → ((𝐹𝑐) = 𝑈 ↔ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈))
1514rspcev 3510 . 2 ((sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
1613, 15syl 17 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wrex 3090  {crab 3093  wss 3791   class class class wbr 4886  cfv 6135  (class class class)co 6922  supcsup 8634  cc 10270  cr 10271   < clt 10411  cle 10412  (,)cioo 12487  [,]cicc 12490  cnccncf 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ioo 12491  df-icc 12494  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-cncf 23089
This theorem is referenced by:  ivth2  23659  ivthle  23660  reeff1olem  24637  signsply0  31228
  Copyright terms: Public domain W3C validator