Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ivth | Structured version Visualization version GIF version |
Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
Ref | Expression |
---|---|
ivth | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ivth.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
4 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
6 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
7 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
8 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
9 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
10 | 9 | breq1d 5080 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ≤ 𝑈 ↔ (𝐹‘𝑥) ≤ 𝑈)) |
11 | 10 | cbvrabv 3416 | . . 3 ⊢ {𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈} = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
12 | eqid 2738 | . . 3 ⊢ sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 | ivthlem3 24522 | . 2 ⊢ (𝜑 → (sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) |
14 | fveqeq2 6765 | . . 3 ⊢ (𝑐 = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) | |
15 | 14 | rspcev 3552 | . 2 ⊢ ((sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
16 | 13, 15 | syl 17 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 < clt 10940 ≤ cle 10941 (,)cioo 13008 [,]cicc 13011 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioo 13012 df-icc 13015 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-cncf 23947 |
This theorem is referenced by: ivth2 24524 ivthle 24525 reeff1olem 25510 signsply0 32430 |
Copyright terms: Public domain | W3C validator |