| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ivth | Structured version Visualization version GIF version | ||
| Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| Ref | Expression |
|---|---|
| ivth | ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ivth.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 4 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 5 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
| 6 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
| 7 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 8 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 9 | fveq2 6831 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 10 | 9 | breq1d 5105 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ≤ 𝑈 ↔ (𝐹‘𝑥) ≤ 𝑈)) |
| 11 | 10 | cbvrabv 3406 | . . 3 ⊢ {𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈} = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} |
| 12 | eqid 2733 | . . 3 ⊢ sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 | ivthlem3 25401 | . 2 ⊢ (𝜑 → (sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) |
| 14 | fveqeq2 6840 | . . 3 ⊢ (𝑐 = sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) → ((𝐹‘𝑐) = 𝑈 ↔ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈)) | |
| 15 | 14 | rspcev 3573 | . 2 ⊢ ((sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < ) ∈ (𝐴(,)𝐵) ∧ (𝐹‘sup({𝑦 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑦) ≤ 𝑈}, ℝ, < )) = 𝑈) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| 16 | 13, 15 | syl 17 | 1 ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 supcsup 9335 ℂcc 11015 ℝcr 11016 < clt 11157 ≤ cle 11158 (,)cioo 13252 [,]cicc 13255 –cn→ccncf 24816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ioo 13256 df-icc 13259 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-cncf 24818 |
| This theorem is referenced by: ivth2 25403 ivthle 25404 reeff1olem 26403 signsply0 34636 |
| Copyright terms: Public domain | W3C validator |