![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atss | Structured version Visualization version GIF version |
Description: A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elat2 32163 | . 2 ⊢ (𝐵 ∈ HAtoms ↔ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) | |
2 | sseq1 4005 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 0ℋ ↔ 𝐴 = 0ℋ)) | |
5 | 3, 4 | orbi12d 917 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 0ℋ) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
6 | 2, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
7 | 6 | rspcv 3605 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
8 | 7 | adantld 490 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
9 | 8 | adantld 490 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
11 | 1, 10 | sylan2b 593 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 Cℋ cch 30752 0ℋc0h 30758 HAtomscat 30788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvmulass 30830 ax-hvdistr1 30831 ax-hvdistr2 30832 ax-hvmul0 30833 ax-hfi 30902 ax-his1 30905 ax-his2 30906 ax-his3 30907 ax-his4 30908 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-icc 13364 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22809 df-topon 22826 df-bases 22862 df-lm 23146 df-haus 23232 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 df-ims 30424 df-hnorm 30791 df-hvsub 30794 df-hlim 30795 df-sh 31030 df-ch 31044 df-ch0 31076 df-cv 32102 df-at 32161 |
This theorem is referenced by: atsseq 32170 |
Copyright terms: Public domain | W3C validator |