![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atss | Structured version Visualization version GIF version |
Description: A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elat2 32144 | . 2 ⊢ (𝐵 ∈ HAtoms ↔ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) | |
2 | sseq1 4004 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 0ℋ ↔ 𝐴 = 0ℋ)) | |
5 | 3, 4 | orbi12d 917 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 0ℋ) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
6 | 2, 5 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
7 | 6 | rspcv 3604 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
8 | 7 | adantld 490 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
9 | 8 | adantld 490 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
11 | 1, 10 | sylan2b 593 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ⊆ wss 3945 Cℋ cch 30733 0ℋc0h 30739 HAtomscat 30769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 ax-hilex 30803 ax-hfvadd 30804 ax-hvcom 30805 ax-hvass 30806 ax-hv0cl 30807 ax-hvaddid 30808 ax-hfvmul 30809 ax-hvmulid 30810 ax-hvmulass 30811 ax-hvdistr1 30812 ax-hvdistr2 30813 ax-hvmul0 30814 ax-hfi 30883 ax-his1 30886 ax-his2 30887 ax-his3 30888 ax-his4 30889 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-n0 12498 df-z 12584 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-icc 13358 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-topgen 17419 df-psmet 21265 df-xmet 21266 df-met 21267 df-bl 21268 df-mopn 21269 df-top 22790 df-topon 22807 df-bases 22843 df-lm 23127 df-haus 23213 df-grpo 30297 df-gid 30298 df-ginv 30299 df-gdiv 30300 df-ablo 30349 df-vc 30363 df-nv 30396 df-va 30399 df-ba 30400 df-sm 30401 df-0v 30402 df-vs 30403 df-nmcv 30404 df-ims 30405 df-hnorm 30772 df-hvsub 30775 df-hlim 30776 df-sh 31011 df-ch 31025 df-ch0 31057 df-cv 32083 df-at 32142 |
This theorem is referenced by: atsseq 32151 |
Copyright terms: Public domain | W3C validator |